Neuropsychological Functioning After Implantable Cardioverter-Defibrillator Surgery

  • Abdullah Alabdulgader


Basic philosophy of medical practice is to preserve life around the globe irrespective of culture and civilization. But the perception and preference of life varies from person to person with respect to quality and span of life. This historical perspective to human life is in concordance to implantable cardiovertor-defibrillators (ICDs) i.e. an invention which has revolutionized the care of patients at risk of life threatening arrhythmias. Although, the evidence of the superiority of after implantable cardioverter-defibrillators (AICDs) over medications in overcoming the ventricular arrhythmias is beyond the scope of this chapter, yet the studies carried over the last decade strongly supports this choice. This chapter establishes new visionary approach for the new era demands. It consolidate new and Intelligent conceptualization for proper perspective and management options for the newly emerging ICD subjects problems and complaints. Smart anticipation of ICD subjects psychosocial and cognitive difficulties based in previous experience, as adjunct to optimizing their rhythm control will be discussed with global perspective aiming toward treating rhythm disorder in the human beings within the physical and biological diversities and cosmos around them. This chapter is a concise scientific back up for all those working in rhythm management and ICD to support them making critical decisions in the case of emergency situation, looks into the cerebral injury in ICD patients, providing knowledge in prevalence and impact of psychological distress in (ICD) patients, with special focus in PTSD in ICD. Quality of Life (QOL) in ICD patients has been given special attention. The new perspective correlating anxiety, depression and autonomic dysfunction and the viscous cycle for shock continuum as well as the benefits of spiritual well being has been discussed. The newly documented relation of solar and geomagnetic activity (SGA) to human heart rhythm and the sensitivity of the autonomic nervous system to SGA is also discussed. Novel preventive and therapeutic approaches has been discussed. Awareness of the magnitude of psychophysiological distress in ICD patients as a very important step in patients overall management was given concern. The intelligent life style using non pharmacological modalities to prevent ventricular arrhythmias including device programming, cardiac rehabilitation and the intelligent idea of sparing shock with positive emotion illustrating the beneficial outcome of cardiac coherence are discussed. Special emphasis has been given to Cognitive behavioral therapy (CBT) and the increasing weight of evidence of its favorable psychophysiological out come in ICD patients. Acute and long term pharmacological treatment has been mentioned. Finally future directions for the new era related to Technical aspects of the device and System NeuroPsychoBiological approach and The new NeuroPsychoBiological Perspective: from Genes to Galaxies and Neurobiology of PTSD as well as special statement in Transcranial Magnetic Stimulation in Post-Traumatic Stress Disorder has been discussed.


Implantable cardioverter-defibrillator (ICD) Neuropsychological functioning Psychosocial distress Post traumatic stress disorder (PTSD) Cerebral electrical injury Quality of life (QOL) Anxiety Depression Autonomic dysfunction Electrical shock Heart rate variability Emotion Cardiac coherence Psychotherapy Cognitive behavioral therapy (CBT) Neurobiology Transcranial magnetic stimulation (TMS) 


  1. 1.
    Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, Domanski M, Troutman C, Anderson J, Johnson G, McNulty SE, Clapp-Channing N, Davidson-Ray LD, Fraulo ES, Fishbein DP, Luceri RM, Ip JH. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–37.PubMedCrossRefGoogle Scholar
  2. 2.
    Daubert JP, Zareba W, Cannom DS, McNitt S, Rosero SZ, Wang P, Schuger C, Steinberg JS, Higgins SL, Wilber DJ, Klein H, Andrews ML, Hall J, Moss AJ. Inappropriate implantable cardioverter-defibrillator shocks in MADIT II: frequency, mechanisms, predictors, and survival impact. J Am Coll Cardiol. 2008;51:1357–65.PubMedCrossRefGoogle Scholar
  3. 3.
    Patel VL, Kaufman DR, Arocha JF. Emerging paradigms of cognition in medical decision making. J Biomed Inform. 2002;5:52–75.CrossRefGoogle Scholar
  4. 4.
    Tversky A, Kahneman D. Judgment under uncertainty: heuristics and biases. Science. 1974;185:1124–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Chaiken S, Maheswaran D. Heuristic processing can bias systematic processing: effects of source credibility, argument ambiguity, and task importance on attitude judgment. J Pers Soc Psychol. 1994;66:460–73.PubMedCrossRefGoogle Scholar
  6. 6.
    Garrett Hazelton A, Sears SF, Ford J, Cahill J, Nekkanti R, Deantonio H, Ottoboni L, Norton L, Wang P. Decisional balance among potential implantable cardioverter defibrillator recipients: development of the ICD-decision analysis scale (ICD-DAS). PACE. 2014;37:63–72.CrossRefGoogle Scholar
  7. 7.
    Aminoff MJ, Scheinman MM, Griffin JC, Herre JM. Electrocerebral accompaniments of syncope associated with malignant ventricular arrhythmias. Ann Intern Med. 1988;108:791–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Clute HL, Levy WJ. Electroencephalographic changes during brief cardiac arrest in humans. Anesthesiology. 1990;73:821–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Skhirtladze K, Birkenberg B, Mora B, et al. Cerebral desaturation during cardiac arrest: its relation to arrest duration and left ventricular pump function. Crit Care Med. 2009;37:471–5.PubMedCrossRefGoogle Scholar
  10. 10.
    De Vries JW, Bakker PFA, Visser GH, et al. Changes in cerebral oxygen uptake and cerebral electrical activity during defibrillation threshold testing. Anesth Analg. 1998;87:16–20.PubMedGoogle Scholar
  11. 11.
    Adams DC, Heyer EJ, Emerson RG, et al. Evaluation of clinical neurologic outcome and electroencephalographic changes during implantation. J Thorac Cardiovasc Surg. 1995;109:565–73.PubMedCrossRefGoogle Scholar
  12. 12.
    Dworschak M, Franz M, Czerny M, Gorlitzer M, Blaschek M, Grubhofer G, Haider W. Release of neuron-specific enolase and S100 after implantation of cardioverters/defibrillators. Crit Care Med. 2003;31(8):2085–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Weigl M, Moritz A, Steinlechner B, et al. Neuronal injury after repeated brief cardiac arrests during internal cardioverter defibrillator implantation is associated with deterioration of cognitive function. Anesth Analg. 2006;103:403–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Almaraz AC, Bobrow BJ, Wingerchuk DM, Wellik KE, Demaerschalk BM. Serum neuron specific enolase to predict neurological outcome after cardiopulmonary resuscitation: a critically appraised topic. Neurologist. 2009;15(1):44–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Sears S, Matchett M, Conti J. Effective management of ICD patient psychosocia lissues and patient critical events. J Cardiovasc Electrophysiol. 2009;20:1297–304.PubMedCrossRefGoogle Scholar
  16. 16.
    Kapa S, Rotondi-Trevisan D, Mariano Z, Aves T, Irvine J, Dorian P, Hayes DL. Psychopathology in patients with ICDs over time: results of a prospective study. Pacing Clin Electrophysiol. 2010;33:198–208.PubMedCrossRefGoogle Scholar
  17. 17.
    Broek K, Nyklícek I, Denollet J. Anxiety predicts poor perceived health in patients with an implantable defibrillator. Psychosomatics. 2009;50:483–92.PubMedCrossRefGoogle Scholar
  18. 18.
    Whang W, Albert C, Sears S, Lampert R, Conti JB, Wang PJ, Singh JP, Ruskin JN, Muller JE, Mittleman MA. Depression as a predictor for appropriate shocks among patients with implantable cardioverter defibrillators: results from the triggers of ventricular arrhythmias (TOVA) study. J Am Coll Cardiol. 2005;45:1090–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Pedersen S, Broek K, Berg M, Theuns DAMJ. Shock as a determinant of poor patient-centered outcomes in implantable cardioverter defibrillator patients: is there more to it than meets the eye? Pacing Clin Electrophysiol. 2010;33:1430–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry. 1995;52:1048–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Ladwig KH, Baumert J, Marten-Mittag B, Kolb C, Zrenner B, Schmitt C. Posttraumatic stress symptoms and predicted mortality in patients with implantable cardioverter defibrillators: results from the prospective living with an implanted cardioverter-defibrillator study. Arch Gen Psychiatry. 2008;65:1324–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Ozer EJ, Best SR, Lipsey TL, Weiss DS. Predictors of posttraumatic stress disorder and symptoms in adults: a meta-analysis. Psychol Bull. 2003;129:52–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Kutz I, Shabata H, Solomon Z, Neumann M, David D. Post-traumatic stress disorder in myocardial infarction patients: prevalence study. Isr J Psychiatry Relat Sci. 1994;31:48–56.PubMedGoogle Scholar
  24. 24.
    Bennett P, Brooke S. Intrusive memories, post-traumatic stress disorder and myocardial infarction. Br J Clin Psychol. 1999;38:411–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Bennett P, Conway M, Clatworthy J, Brooke S, Owen R. Predicting post-traumatic symptoms in cardiac patients. Heart Lung J Acute Crit Care. 2001;30:458–65.CrossRefGoogle Scholar
  26. 26.
    Bennett P, Owen RL, Koutsakis S, Bisson J. Personality, social context and cognitive predictors of post-traumatic stress disorder in myocardial infarction patients. Psychol Health. 2002;17:489–500.CrossRefGoogle Scholar
  27. 27.
    Pedersen S, Domburg R, Theuns D, Jordaens L, Erdman RAM. Type D personality is associated with increased anxiety and depressive symptoms in patients with an implantable cardioverter defibrillator and their partners. Psychosom Med. 2004;66:714–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Cotter G, Milo-Cotter O, Rubinstein D, Shemesh E. Posttraumatic stress disorder: a missed link between psychiatric and cardiovascular morbidity? CNS Spectr. 2006;11:129–36.PubMedCrossRefGoogle Scholar
  29. 29.
    Shemesh E, Koren-Michowitz M, Yehuda R, Milo-Cotter O, Murdock E, Vered Z, Shneider BL, Gorman JM, Cotter G. Symptoms of posttraumatic stress disorder in patients who have had a myocardial infarction. Psychosomatics. 2006;47:231–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Magruder KM, Frueh BC, Knapp RG, Davis L, Hamner MB, Martin RH, Gold PB, Arana GW. Prevalence of posttraumatic stress disorder in veterans affairs primary care clinics. Gen Hosp Psychiatry. 2005;27:169–79.PubMedCrossRefGoogle Scholar
  31. 31.
    Stein MB, McQuaid JR, Pedrelli P, Lenox R, Cahill ME. Posttraumatic stress disorder in the primary care medical setting. Gen Hosp Psychiatry. 2000;22:261–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Von Kanel R, Baumert J, Kolb C, Cho EN, Ladwig KH. Chronic posttraumatic stress and its predictors in patients living with an implantable cardioverter defibrillator. J Affect Disord. 2010;131(1–3):344–52.Google Scholar
  33. 33.
    Sears S, Hauf J, Kirian K, Hazelton G, Conti J. Posttraumatic stress and the implantable cardioverter-defibrillator patient: what the electrophysiologist needs to know. Circ Arrhythm Electrophysiol. 2011;4(2):242–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Sears S, Conti J. Understanding implantable cardioverter defibrillator shocks and storms: medical and psychosocial considerations for research and clinical care. Clin Cardiol. 2003;26:107–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Versteeg H, Theuns DAMJ, Erdman RAM, Jordaens L, Pedersen SS. Posttraumatic stress in implantable cardioverter defibrillator patients: the role of preimplantation distress and shocks. Int J Cardiol. 2011;3:438–9.CrossRefGoogle Scholar
  36. 36.
    Figley CR, Nash WP, editors. Combat stress injury theory, research, and management. New York: Routledge; 2007.Google Scholar
  37. 37.
    May CD, Smith PR, Murdock CJ, et al. The impact of the implantable cardioverter defibrillator on quality of life. Pacing Clin Electrophysiol. 1995;18:1411–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Namerow PB, Firth BR, Heywood GM, et al. Quality of life six months after CABG surgery in patients randomized to ICD versus no ICD therapy: findings from the CABG patch trial. Pacing Clin Electrophysiol. 1999;22:1305–13.PubMedCrossRefGoogle Scholar
  39. 39.
    Kalbfleisch KR, Lehmann MH, Steinman RT, et al. Reemployment following implantation of the automatic cardioverter defibrillator. Am J Cardiol. 1989;64:199–202.PubMedCrossRefGoogle Scholar
  40. 40.
    Sears SF Jr, Conti J. Quality of life and psychological functioning of ICD patients. Heart. 2002;87:488–93.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Credner SC, Klingenheben T, Mauss O, et al. Electrical storm in patients with transvenous implantable cardioverter defibrillators. J Am Coll Cardiol. 1998;32:1909–15.PubMedCrossRefGoogle Scholar
  42. 42.
    Sears SF Jr, Burns JL, Handberg E, et al. Young at heart: understanding the unique psychosocial adjustment of young implantable cardioverter defibrillator recipients. Pacing Clin Electrophysiol. 2001;24:1113.PubMedCrossRefGoogle Scholar
  43. 43.
    Kawachi I, Sparrow D, Vokonas PS, Weiss ST. Symptoms of anxiety and risk of coronary heart disease. The normative aging study. Circulation. 1994;90(5):2225–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Barefoot JC, Helms MJ, Mark DB, Blumenthal JA, Califf RM, Haney TL, O’Connor CM, Siegler IC, Williams RB. Depression and long-term mortality risk in patients with coronary artery disease. Am J Cardiol. 1996;78(6):613. doi: 10.1016/S0002-9149(96)00380-3.PubMedCrossRefGoogle Scholar
  45. 45.
    Thomas SAFE, Wimbush F, Schron E. Psychological factors and survival in the cardiac arrhythmia suppression trial (CAST): a reexamination. Am J Crit Care. 1997;6(2):116–26.PubMedGoogle Scholar
  46. 46.
    Carney RM, Freedland KE, Jaffe AS, Frasure-Smith N, Lesperance F, Sheps DS, Glassman AH, O’Connor CM, Blumenthal JA, Kaufmann PG, et al. Depression as a risk factor for post-MI mortality. J Am Coll Cardiol. 2004;44(2):472. doi: 10.1016/j.jacc.2004.04.030.PubMedCrossRefGoogle Scholar
  47. 47.
    Lesperance F, Frasure-Smith N, Talajic M, Bourassa MG. Five-year risk of cardiac mortality in relation to initial severity and one-year changes in depression symptoms after myocardial infarction. Circulation. 2002;105(9):1049–53. doi: 10.1161/hc0902.104707.PubMedCrossRefGoogle Scholar
  48. 48.
    Grace S, Abbey S, Irvine J, Zachary M, Stewart D. Prospective examination of anxiety persistence and its relationship to cardiac symptoms and recurrent cardiac events. Psychother Psychosom. 2004;73:344–52. doi: 10.1159/000080387.PubMedCrossRefGoogle Scholar
  49. 49.
    Moser D, Dracup K. Is anxiety early after myocardial infarction associated with subsequent ischemic and arrhythmic events? Psychosom Med. 1996;58:395–401.PubMedCrossRefGoogle Scholar
  50. 50.
    Moss AJ, Greenberg H, Case RB, Zareba W, Hall WJ, Brown MW, Daubert JP, McNitt S, Andrews ML, Elkin AD, et al. Long-term clinical course of patients after termination of ventricular tachyarrhythmia by an implanted defibrillator. Circulation. 2004;110(25):3760–5. doi: 10.1161/01.CIR.0000150390.04704.B7.PubMedCrossRefGoogle Scholar
  51. 51.
    Lown B, Temte JV, Reich P, Gaughan C, Regestein Q, Hal H. Basis for recurring ventricular fibrillation in the absence of coronary heart disease and its management. N Engl J Med. 1976;294(12):623–9. doi: 10.1056/NEJM197603182941201.PubMedCrossRefGoogle Scholar
  52. 52.
    Lown B, DeSilva R, Reich P, Murawski B. Psychophysiologic factors in sudden cardiac death. Am J Psychiatry. 1980;137(11):1325–35.PubMedCrossRefGoogle Scholar
  53. 53.
    Leor J, Poole WK, Kloner RA. Sudden cardiac death triggered by an earthquake. N Engl J Med. 1996;334(7):413–9. doi: 10.1056/NEJM199602153340701.PubMedCrossRefGoogle Scholar
  54. 54.
    Kloner RA, Leor J, Poole WK, Perritt R. Population-based analysis of the effect of the northridge earthquake on cardiac death in Los Angeles County, California. J Am Coll Cardiol. 1997;30(5):1174. doi: 10.1016/S0735-1097(97)00281-7.PubMedCrossRefGoogle Scholar
  55. 55.
    Meisel S, Kutz I. Effect of Iraqi missile war on incidence of acute myocardial infarction and sudden death in Israeli civilians. Lancet. 1991;338(8768):660–1. doi: 10.1016/0140-6736(91)91234-L.PubMedCrossRefGoogle Scholar
  56. 56.
    Ironson GTC, Boltwood M, Bartzokis T, et al. Effects of anger on left ventricular ejection fraction in coronary artery disease. Am J Cardiol. 1993;70(3):281–5. doi: 10.1016/0002-9149(92)90605-X.CrossRefGoogle Scholar
  57. 57.
    Wittstein IS, Thiemann DR, Lima JAC, Baughman KL, Schulman SP, Gerstenblith G, Wu KC, Rade JJ, Bivalacqua TJ, Champion HC. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352(6):539–48. doi: 10.1056/NEJMoa043046.PubMedCrossRefGoogle Scholar
  58. 58.
    Rozanski A, Bairey C, Krantz D, Friedman J. Mental stress and the induction of silent myocardial ischemia in patients with coronary artery disease. N Engl J Med. 1988;318(16):1005–12. doi: 10.1056/NEJM198804213181601.PubMedCrossRefGoogle Scholar
  59. 59.
    Kawachi I, Sparrow D, Vokonas PS, Weiss ST. Decreased heart rate variability in men with phobic anxiety (data from the normative aging study). Am J Cardiol. 1995;75(14):882. doi: 10.1016/S0002-9149(99)80680-8.PubMedCrossRefGoogle Scholar
  60. 60.
    Thayer JF, Friedman BH, Borkovec TD. Autonomic characteristics of generalized anxiety disorder and worry. Biol Psychiatry. 1996;39(4):255–66. doi: 10.1016/0006-3223(95)00136-0.PubMedCrossRefGoogle Scholar
  61. 61.
    Watkins LL, Blumenthal JA, Carney RM. Association of anxiety with reduced baroreflex cardiac control in patients after acute myocardial infarction. Am Heart J. 2002;143:460–6. doi: 10.1067/mhj.2002.120404.PubMedCrossRefGoogle Scholar
  62. 62.
    von Kanel R, Mills PJ, Fainman C, Dimsdale JE. Effects of psychological stress and psychiatric disorders on blood coagulation and fibrinolysis: a biobehavioral pathway to coronary artery disease? Psychosom Med. 2001;63(4):531–44.CrossRefGoogle Scholar
  63. 63.
    Friedmann E, Thomas S. Pet ownership, social support, and one-year survival after acute myocardial infarction in the cardiac arrhythmia suppression trial (CAST). Am J Cardiol. 1995;76:1213–7. doi: 10.1016/S0002-9149(99)80343-9.PubMedCrossRefGoogle Scholar
  64. 64.
    Friedmann E, Thomas SA, Stein PK, Kleiger RE. Relation between pet ownership and heart rate variability in patients with healed myocardial infarcts. Am J Cardiol. 2003;91(6):718. doi: 10.1016/S0002-9149(02)03412-4.PubMedCrossRefGoogle Scholar
  65. 65.
    Francis J, Weinstein A, Krantz D, Haigney M, Stein P, Stone P, Gottdiener J, Kop W. Association between symptoms of depression and anxiety with heart rate variability in patients with implantable cardioverter defibrillators. Psychosom Med. 2009;71(8):821–7. doi: 10.1097/PSY.0b013e3181b39aa1.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Rottenberg J, Chambers AS, Allen JJ, Manber R. Cardiac vagal control in the severity and course ofdepression: the importance of symptomatic heterogeneity. J Affect Disord. 2007;103(1–3):173–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Pieper S, Brosschot JF, van der Leeden R, Thayer JF. Cardiac effects of momentary assessed worry episodes and stressful events. Psychosom Med. 2007;69(9):901–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Bekelman DB, Dy SM, Becker DM, et al. Spiritual well-being and depression in patients with heart failure. J Gen Intern Med. 2007;22(4):470–7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Salmoirago-Blotcher E, Crawford S, Tran C, Goldberg R, Rosenthal L, Ockene I. Spiritual well-being may buffer psychological distress in patients with implantable cardioverter defibrillators (ICD). J Evid Based Complementary Altern Med. 2012;17(3):148–54.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Baevsky RM, Petrov VM, Chernikova AG. Regulation of autonomic nervous system in space and magnetic storms. Adv Space Res. 1998;22(2):227–34.PubMedCrossRefGoogle Scholar
  71. 71.
    Cornelissen G, McCraty R, Atkinson M, Halberg F. Gender differences in circadian and extra-circadian aspects of heart rate variability (HRV). 1st International Workshop of the Tsim Tsoum Institute. Krakow, Poland; 2010.Google Scholar
  72. 72.
    Alabdulgader A, McCraty R, Atkinson M, Vainoras A, Berškienė K, Mauricienė V, Daunoravičienė A, Navickas Z, Šmidtaitė R, Landauskas M. Human heart rhythm sensitivity to earth local magnetic field fluctuations. J Vibroeng. 2015;17(6):3271–8.Google Scholar
  73. 73.
    Wilkoff BL, Williamson BD, Stern RS, Moore SL, Lee SW, Birgersdotter-Green UM, Wathen MS, VanGelden IC, Heubner BM, Brown ML, Holloman KK. Strategic programming of detection and therapy parameters in implantable cardioverter-defibrillators reduces shock in primary prevention patients. J Am Coll Cardiol. 2008;52:541–51.PubMedCrossRefGoogle Scholar
  74. 74.
    Connolly SJ, Dorian P, Roberts RS, Gent M, Bailin S, Fain ES, Thorpe K, Champagne J, Talajic M, Coutu B, Gronefeld GC, Hohnloser SA. Comparison of beta-blockers, amiodarone plus beta-blockers, or sotalol for prevention of shocks from implantable cardioverter defibrillators: the OPTIC study: a randomized trial. JAMA. 2006;295:165–71.PubMedCrossRefGoogle Scholar
  75. 75.
    Mishkin J, Saxonhouse S, Woo G, Burkart TA, Miles WM, Conti JB, Shofield KS, Sears SF, Aranda JM. Appropriate evaluation and treatment of heart failure patients after implantable cardioverter-defibrillator discharge: time to go beyond the initial shock. J Am Coll Cardiol. 2009;54:1993–2000.PubMedCrossRefGoogle Scholar
  76. 76.
    Marcus GM, Chan DW, Redberg RF. Recollection of pain due to inappropriate versus appropriate implantable cardioverter-defibrillator shocks. Pacing Clin Electrophysiol. 2010;34:348–53.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sears SF, Kovacs AH, Conti JB, Handberg E. Expanding the scope of practice for cardiac rehabilitation: managing patients with implantable cardioverter defibrillators. J Cardiol Rehab. 2004;24:209–15.CrossRefGoogle Scholar
  78. 78.
    Berg SK, Pedersen PU, Zwisler AD, Winkel P, Gluud C, Pedersen BD, Svendsen JH. Comprehensive cardiac rehabilitation improves outcome for patients with implantable cardioverter defibrillator. Findings from the COPE-ICD randomised clinical trial. Eur J Cardiovasc Nurs. 2015;14(1):34–44. doi: 10.1177/1474515114521920. Epub 2014 Feb 5.PubMedCrossRefGoogle Scholar
  79. 79.
    Fitchet A, Doherty P, Bundy C, Bell W, Fitzpatrick AP, Garratt CJ. Comprehensivecardiac rehabilitation programme for implantable cardioverter-defibrillator patients: a randomised controlled trial. Heart. 2003;89:155–60.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    McCraty R, Zayas MA. Cardiac coherence, self-regulation, autonomic stability, and psychosocial well-being. Front Psychol. 2014;5:1090.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Park HD, Correia S, Ducorps A, TallonBaudry C. Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nat Neurosci. 2014;17:612–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Alabdulgader A. Coherence: a novel nonpharmacological modality for lowering blood pressure in hypertensive patients. Glob Adv Health Med. 2012;1:54–62.CrossRefGoogle Scholar
  83. 83.
    Sarabia-Cobo CM. Heart coherence: a new tool in the management of stress on professionals and family caregivers of patients with dementia. Appl Psychophysiol Biofeedback. 2015;40(2):75–83. doi: 10.1007/s10484-015-9276-y.PubMedCrossRefGoogle Scholar
  84. 84.
    HeartMathInstitute. Chapter 2: Resilience and stress and emotion. In:Science of the heart, exploring the role of the heart in human performance. Boulder Creek: HeartMathInstitute; 2016.Google Scholar
  85. 85.
    McCraty R, Atkinson M, Tomasino D, Bradley RT. The coherent heart: heart-brain interactions, psychophysiological coherence, and the emergence of system-wide order. Integral Rev. 2009;5(2):10–115.Google Scholar
  86. 86.
    Fredrickson BL. Positive emotions. In: Snyder CR, Lopez SJ, editors. Handbook of positive psychology. New York: Oxford University Press; 2002. p. 120–34.Google Scholar
  87. 87.
    Isen AM. Positive affect. In: Dalgleish T, Power M, editors. Handbook of cognition and emotion. New York: Wiley; 1999. p. 522–39.Google Scholar
  88. 88.
    Wichers MC, et al. Evidence that moment-to-moment variation in positive emotions buffer genetic risk for depression: a momentary assessment twin study. Acta Psychiatr Scand. 2007;115(6):451–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Fredrickson BL. The role of positive emotions in positive psychology. The broaden-and-build theory of positive emotions. Am Psychol. 2001;56(3):218–26.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Fredrickson BL, Joiner T. Positive emotions trigger upward spirals toward emotional well-being. Psychol Sci. 2002;13(2):172–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Fredrickson BL, et al. What good are positive emotions in crises? A prospective study of resilience and emotions following the terrorist attacks on the United States on September 11th, 2001. J Pers Soc Psychol. 2003;84(2):365–76.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lampert R, Shusterman V, Burg M, McPherson C, Batsford W, Goldberg A, Soufer R. Anger-induced T-wave alternans predicts future ventricular arrhythmias in patients with implantable cardioverter-defibrillators. J Am Coll Cardiol. 2009;53(9):774–8. doi: 10.1016/j.jacc.2008.10.053.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Chevalier P, Cottraux J, Mollard E, Sai NY, Brun S, Burri H, Restier L, Adeleine P. Prevention of implantable defibrillator shocks by cognitive behavioral therapy. Am Heart J. 2006;151(1):191.e1–6.CrossRefGoogle Scholar
  94. 94.
    Lewin RJ, Coulton S, Frizelle DJ, Kaye G, Cox H. A brief cognitive behavioural pre-implantation and rehabilitation programme for patients receiving an implantable cardioverter-defibrillator improves physical health and reduces psychological morbidity and unplanned readmissions. Heart. 2009;95:63–9. doi: 10.1136/hrt.2007.129890.PubMedCrossRefGoogle Scholar
  95. 95.
    Pedersen SS, Broek KC, Sears SF. Psychological intervention following implantation of an implantable defibrillator: a review and future recommendations. Pacing Clin Electrophysiol. 2007;30:1546–54.PubMedCrossRefGoogle Scholar
  96. 96.
    Sears S, Sowell L, Kuhl E, Kovacs AH, Serber ER, Handberg E, Kneipp SM, Zineh I, Conti JB. The ICD shock and stress management program: a randomized trial of psychosocial treatment to optimize quality of life in ICD patients. Pacing Clin Electrophysiol. 2007;30:858–64.PubMedCrossRefGoogle Scholar
  97. 97.
    Otto MW, Smits JAJ, Reese HE. Cognitive-behavioral therapy for thetreatment of anxiety disorders. J Clin Psychiatry. 2004;65(5):34–41.PubMedGoogle Scholar
  98. 98.
    Bradly R, Greene J, Russ E, Dutra L, Westen D. A multidimensional meta-analysis of psychotherapy for PTSD. Am J Psychiatry. 2005;162:214–27.CrossRefGoogle Scholar
  99. 99.
    Ipser JC, Stein DJ, Hawkridge S, et al. Pharmacotherapy for anxiety disorders in children and adolescents (review). Cochrane Database Syst Rev. 2009;3:CD005170. doi: 10.1002/14651858.CD005170.pub2.Google Scholar
  100. 100.
    Padala PR, Madison J, Monnahan M, et al. Risperidone monotherapy for post-traumatic stress disorder related to sexual assault and domestic abuse in women. Int Clin Psychopharmacol. 2006;21:275–80.PubMedCrossRefGoogle Scholar
  101. 101.
    Carey P, Suliman S, Ganesan K, et al. Olanzapine monotherapy in posttraumatic stress disorder: efficacy in a randomized, double-blind, placebo-controlled study. Hum Psychopharmacol. 2012;27:386–91.PubMedCrossRefGoogle Scholar
  102. 102.
    Yeh MSL, Mari JJ, Pupo Costa MC, et al. A double-blind randomized controlled trial to study the efficacy of topiramate in a civilian sample of PTSD. CNS Neurosci Ther. 2011;17:305–10.PubMedCrossRefGoogle Scholar
  103. 103.
    Perkonigg A, Pfister H, Stein MB, et al. Longitudinal course of posttraumatic stress disorder and posttraumatic stress disorder symptoms in a community sample of adolescents and young adults. Am J Psychiatry. 2005;162:1320–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Davidson J, Baldwin D, Stein DJ, et al. Treatment of posttraumatic stress disorder with venlafaxine extended release—a 6-month randomized controlled trial. Arch Gen Psychiatry. 2006;63:1158–65.PubMedCrossRefGoogle Scholar
  105. 105.
    Londborg PD, Hegel MT, Goldstein S, et al. Sertraline treatment of posttraumatic stress disorder: results of 24 weeks of open-label continuation treatment. J Clin Psychiatry. 2001;62:325–31.PubMedCrossRefGoogle Scholar
  106. 106.
    Martenyi F, Brown EB, Zhang H, et al. Fluoxetine v. Placebo in prevention of relapse in post-traumatic stress disorder. Br J Psychiatry. 2002;181:315–20.PubMedCrossRefGoogle Scholar
  107. 107.
    Davidson JRT, Connor KM, Hertzberg MA, et al. Maintenance therapy with fluoxetine in posttraumatic stress disorder: a placebo-controlled discontinuation study. J Clin Psychopharmacol. 2005;25:166–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Connor KM, Davidson JRT, Weisler RH, et al. Tiagabine for posttraumatic stress disorder: effects of open-label and double-blind discontinuation treatment. Psychopharmacology. 2006;184:21–5.PubMedCrossRefGoogle Scholar
  109. 109.
    Stoupel EG, Tamoshiunas A, Radishauskas R, Bernotiene G, Abramson E, et al. Neutrons and the plaque: AMI (n-8920) at days of zero GMA/high neutron activity (n-36) and the following days and week. Kaunas, Lithuania, 2000-2007. J Clin Exp Cardiol. 2011;2(1):121.Google Scholar
  110. 110.
    Stoupel EG, Tamoshiunas A, Radishauskas R, Bernotiene G, Abramson E, et al. Acute myocardial infarction (AMI) and intermediate coronary syndrome (ICS). Health. 2010;2(2):131–6.CrossRefGoogle Scholar
  111. 111.
    Stoupel EG, Wittenberg C, Zabludowski J, Boner G. Ambulatory blood pressure monitoring inpatients with hypertension on days of high and low geomagnetic activity. J Hum Hypertens. 1995;9(4):293–4.PubMedGoogle Scholar
  112. 112.
    McCraty R, Childre D. Coherence: bridging personal, social and global health. Altern Ther Health Med. 2010;16(4):10–24.PubMedGoogle Scholar
  113. 113.
    Halberg F, Cornelissen G, McCraty R, Al-Abdulgader A. Time structures (chronomes) of the blood circulation, populations’ health, human affairs and space weather. World Heart J. 2011;3(1):1–40.Google Scholar
  114. 114.
    Cornélissen G, Halberg F, Schwartzkopff O, et al. Chronomes, time structures, for chronobioengineering for a full life. Biomed Instrum Technol. 1999;33:152–87.PubMedGoogle Scholar
  115. 115.
    Otsuka K, Cornélissen G, Weydahl A, et al. Geomagnetic disturbance associated with decrease in heart rate variability in a subarctic area. Biomed Pharmacother. 2001;55(Suppl 1):51–6.Google Scholar
  116. 116.
    Baevsky RM, Petrov VM, Cornélissen G, et al. Meta-analyzed heart rate variability, exposure to geomagnetic storms, and the risk of ischemic heart disease. Scr Med. 1997;70:199–204.Google Scholar
  117. 117.
    Cornélissen G, Halberg F, Breus T, et al. Non-photic solar associations of heart rate variability and myocardial infarction. J Atmos Sol Terr Phys. 2002;64:707–20.CrossRefGoogle Scholar
  118. 118.
    Wolpert C, Jung W, Spehl S, et al. Zirkadiane und wochentliche verteilung maligner ventrikularer tachyarrhythmienbei patientenmitkoronarer herzkrankheitoderdilatativer kardiomyopathiemit implantiertem kardioverter-defibrillator. Dtsch Med Wochenschr. 1998;123:140–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Shalev I, Moffitt TE, Braithwaite AW, Danese A, Fleming NI, Goldman-Mellor S, Harrington HL, Houts RM, Israel S, Poulton R, Robertson SP, Sugden K, Williams B, Caspi A. Internalizing disorders and leukocyte telomere erosion: a prospective study of depression, generalized anxiety disorder and post-traumatic stress disorder. Mol Psychiatry. 2014;19:1163–70. doi: 10.1038/mp.2013.183.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Logue W, Baldwin C, Guffanti G, Melista E, Wolf EJ, Reardon AF, Uddin M, Wildman D, Galea S, Koenen KC, Miller MW. A genome-wide association study of post-traumatic stress disorder identifies the retinoid-related orphan receptor alpha (RORA) gene as a significant risk locus. Mol Psychiatry. 2013;18:937–42. doi: 10.1038/mp.2012.113.PubMedCrossRefGoogle Scholar
  121. 121.
    Liboff AR, Williams T Jr, Strong DM, Wistar R Jr. Time-varying magnetic fields: effect on DNA synthesis. Science. 1984;223(4638):818–20.PubMedCrossRefGoogle Scholar
  122. 122.
    Yang R, Daigle JBJ, Muhie SY, Hammamieh R, Jett M, Petzold LR, Doyle IIIFJ. Core modular blood and brain biomarkers in social defeat mouse model for post traumatic stress disorder. BMC Syst Biol. 2013;7:80. doi: 10.1186/1752-0509-7-80.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Thakur GS, Daigle BJ Jr, Dean KR, Zhang Y, Rodriguez-Fernandez M, Hammamieh R, Yang R, Jett M, Palma J, Petzold LR, Doyle FJ III. Systems biology approach to understanding post-traumatic stress disorder. Mol Biosyst. 2015;11(4):980–93. doi: 10.1039/c4mb00404c.PubMedCrossRefGoogle Scholar
  124. 124.
    Neumeister A, Normandin MD, Pietrzak RH, Piomelli D, Zheng MQ, Gujarro-Anton A, Potenza MN, Bailey CR, Lin SF, Najafzadeh S, Ropchan J, Henry S, Corsi-Travali S, Carson RE, Huang Y. Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study. Mol Psychiatry. 2013;18(9):1034–40. doi: 10.1038/mp.2013.61. Epub 2013 May 14.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Vukojevic V, Kolassa IT, Fastenrath M, Gschwind L, Spalek K, Milnik A, Heck A, Vogler C, Wilker S, Demougin P, Peter F, Atucha E, Stetak A, Roozendaal B, Elbert T, Papassotiropoulos A, de Quervain DJ. Epigenetic modification of the glucocorticoid receptor gene is linked to traumatic memory and post-traumatic stress disorder risk in genocide survivors. J Neurosci. 2014;34(31):10274–84. doi: 10.1523/JNEUROSCI.1526-14.2014.PubMedCrossRefGoogle Scholar
  126. 126.
    Arnsten AFT, Raskind MA, Taylor FB, Connor DF. The effects of stress exposure on prefrontal cortex: translating basic research into successful treatments for post-traumatic stress disorder. Neurobiol Stress. 2015;1:89–99.PubMedCrossRefGoogle Scholar
  127. 127.
    Tofts PS. The distribution of induced currents in magnetic stimulation of the nervous system. Phys Med Biol. 1990;35:1119–28.PubMedCrossRefGoogle Scholar
  128. 128.
    Isserles M, Shalev AY, Roth Y, Peri T, Kutz I, Zlotnick E, Zangen A. Effectiveness of deep transcranial magnetic stimulation combined with a brief exposure procedure in post-traumatic stress disorder—a pilot study. Brain Stimul. 2013;6(3):377–83.PubMedCrossRefGoogle Scholar
  129. 129.
    Karsen EF, Watts BV, Holtzheimer PE. Review of the effectiveness of transcranial magnetic stimulation for post-traumatic stress disorder. Brain Stimul. 2014;7(2):151–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Prince Sultan Cardiac CentreHofufSaudi Arabia

Personalised recommendations