Comparing Spatial and Spatio-temporal FPCA to Impute Large Continuous Gaps in Space

  • Mariantonietta RuggieriEmail author
  • Antonella Plaia
  • Francesca Di Salvo
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


Multivariate spatio-temporal data analysis methods usually assume fairly complete data, while a number of gaps often occur along time or in space. In air quality data long gaps may be due to instrument malfunctions; moreover, not all the pollutants of interest are measured in all the monitoring stations of a network. In literature, many statistical methods have been proposed for imputing short sequences of missing values, but most of them are not valid when the fraction of missing values is high. Furthermore, the limitation of the methods commonly used consists in exploiting temporal only, or spatial only, correlation of the data. The objective of this paper is to provide an approach based on spatio-temporal functional principal component analysis (FPCA), exploiting simultaneously the spatial and temporal correlations for multivariate data, in order to provide an accurate imputation of missing values. At this aim, the methodology proposed in a previous proposal is applied, in order to obtain a good reconstruction of temporal/spatial series, especially in presence of long gap sequences, comparing spatial and spatio-temporal FPCA.


FDA FPCA GAM P-splines 


  1. 1.
    Cardot, H., Sarda, P.: Estimation in generalized linear models for functional data via penalized likelihood. J. Multivar. Anal. 92, 24–41 (2005)Google Scholar
  2. 2.
    Di Salvo, F., Ruggieri, M., Plaia, A.: Functional principal component analysis for multivariate multidimensional environmental data. Environ. Ecol. Stat. 22(4), 739–757 (2015)Google Scholar
  3. 3.
    Eilers, P., Marx, B.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11, 89–121 (1996)Google Scholar
  4. 4.
    Escabias, M., Aguilera, A.M., Valderrama, M.J.: Principal component estimation of functional logistic regression discussion of two different approaches. J. Nonparametric Stat. 16, 365–384 (2004)Google Scholar
  5. 5.
    Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman & Hall/CRC, Boca Raton (1990)Google Scholar
  6. 6.
    Lee, D., Durban, M.: P-spline ANOVA-type interaction models for spatio-temporal smoothing. Stat. Model. 11, 49–69 (2011)Google Scholar
  7. 7.
    Li, Y., Wang, N., Hong, M., Turner, N.D., Lupton, J.R., Carroll, R.J.: Nonparametric estimation of correlation functions in longitudinal and spatial data, with application to colon carcinogenesis experiments. Ann. Stat. 35(4), 1608–1643 (2007)Google Scholar
  8. 8.
    Liu, C., Ray, S., Hooker, G.: Functional Principal Components Analysis of Spatially Correlated Data, arXiv:1411.4681 (2014)
  9. 9.
    Muller, H.G., Yao, F.: Functional additive models. J. Am. Stat. Assoc. 103, 1534–1544 (2008)Google Scholar
  10. 10.
    McCullagh, P., Nelder, J.: Generalized Linear Models, 2nd edn. Chapman & Hall/CRC, Boca Raton (1989)Google Scholar
  11. 11.
    Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. 2nd edn. Springer-Verlag (2005)Google Scholar
  12. 12.
    Ruggieri, M., Di Salvo, F., Plaia, A., and Agró, G.: EOFs for gap filling in multivariate air quality data: a FDA approach. In: Lechevallier, Y. and Saporta G. (eds.), Proceedings of COMPSTAT 2010, Physica-Verlag, pp. 1557–1564 (2010)Google Scholar
  13. 13.
    Ruggieri, M., Di Salvo, F., Plaia, A., Agro’, G.: Functional principal component analysis for the explorative analysis of multisite-multivariate air pollution time series with long gaps. J. Appl. Stat. 40, 795–807 (2013)Google Scholar
  14. 14.
    Ruggieri, M., Plaia, A.: An aggregate AQI: comparing different standardizations and introducing a variability index. Sci. Total Environ. 420, 263–272 (2012)Google Scholar
  15. 15.
    Yao, F., Muller, H., Wang, J.: Functional data analysis for sparse longitudinal data. J. Am. Stat. Assoc. 100(470), 577–590 (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mariantonietta Ruggieri
    • 1
    Email author
  • Antonella Plaia
    • 1
  • Francesca Di Salvo
    • 1
  1. 1.Dipartimento di Scienze Economiche, Aziendali e StatisticheUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations