Advertisement

P-Splines Based Clustering as a General Framework: Some Applications Using Different Clustering Algorithms

  • Carmela IorioEmail author
  • Gianluca Frasso
  • Antonio D’Ambrosio
  • Roberta Siciliano
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

A parsimonious clustering method suitable for time course data applications has been recently introduced. The idea behind this proposal is quite simple but efficient. Each series is first summarized by lower dimensional vectors of P-spline coefficients and then, the P-spline coefficients are partitioned by means of a suitable clustering algorithm. In this paper, we investigate the performance of this proposal through several applications showing examples within both hierarchical and non-hierarchical clustering algorithms.

Keywords

P-spline Clustering Unsupervised learning Time course data 

References

  1. 1.
    Liao, T.W.: Clustering of time series data: a survey. Pattern Recogn. 38(11), 1857–1874 (2005)CrossRefGoogle Scholar
  2. 2.
    Maharaj, E.A.: Cluster of time series. J. Classif. 17(2), 297–314 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kumar, M., Patel, N.R., Woo, J.: Clustering seasonality patterns in the presence of errors. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 557–563 (2002)Google Scholar
  4. 4.
    García-López, M.L., García-Ródenas, R., Gómez-González, A.: K-means algorithms for functional data. Neurocomputing 151, 231–245 (2015)CrossRefGoogle Scholar
  5. 5.
    Baragona, R.: A simulation study on clustering time series with metaheuristic methods. Quad. di Stat. 3, 1–26 (2001)MathSciNetGoogle Scholar
  6. 6.
    Fu, T.C., Chung, F.L., Ng, V., Luk, R.: Pattern discovery from stock time series using self-organizing maps. In: Workshop Notes of KDD2001 Workshop on Temporal Data Mining, ACM SIGKDD, 26–29 (2001)Google Scholar
  7. 7.
    Sangalli, L.M., Secchi, P., Vantini, S., Vitelli, V.: Functional clustering and alignment methods with applications. Commun. Appl. Ind. Math. 1(1), 205–224 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ramoni, M., Sebastiani, P., Cohen, P.: Bayesian clustering by dynamics. Mach. Learn. 47(1), 91–121 (2002)CrossRefGoogle Scholar
  9. 9.
    Iorio, C., Frasso, G., D’Ambrosio, A., Siciliano, R.: Parsimonious time series clustering using P-splines. Exp. Syst. Appl. 52, 26–38 (2016)CrossRefGoogle Scholar
  10. 10.
    Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2), 89–102 (1996)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Eilers, P.H.C., Marx, B.D.: Splines, knots, and penalties. Wiley Interdisc. Rev. Comput. Stat. 2(6), 637–653 (2010)CrossRefGoogle Scholar
  12. 12.
    Abraham, C., Cornillon, P.A., Matzner-Løber, E., Molinari, N.: Unsupervised curve clustering using B-splines. Scand. J. Stat. 3(30), 581–595 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Coffey, N., Hinde, J., Holian, E.: Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data. Comput. Stat. Data Anal. 71(3), 14–29 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    de Boor, C.: A Practical Guide to Splines, Applied Mathematical Sciences Series. Springer, New York (2001)zbMATHGoogle Scholar
  15. 15.
    Hastie, T.J., Tibshirani, R.J., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009)CrossRefGoogle Scholar
  16. 16.
    Frasso, G., Eilers, P.H.C.: L- and V-curves for optimal smoothing. Stat. Model. 15(1), 91–111 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34(4), 561–580 (1992)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63(2), 411–423 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Arbeitman, M.N., Furlong, E.E.M., Imam, F., Johnson, E., Null, B.H., Baker, B.S., Krasnow, M.A., Scott, M.P., Davis, R.W., White, K.P.: Gene expression during the life cycle of drosophila melanogaster. Science 297(5590), 2270–2275 (2002)CrossRefGoogle Scholar
  20. 20.
    Penrose, L.S.: Distance, size and shape. Ann. Eugenics 17(1), 337–343 (1952)CrossRefGoogle Scholar
  21. 21.
    Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)CrossRefGoogle Scholar
  22. 22.
    Chiou, J.M., Li, P.L.: Functional clustering and identifying substructures of longitudinal data. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 69(4), 679–699 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Febrero-Bande, M., Oviedo de la Fuente, M.: Statistical computing in functional data analysis: the R package fda. usc. J. Stat. Softw. 51(4), 1–28 (2012)CrossRefGoogle Scholar
  24. 24.
    Kaufman, L., Rousseeuw, P.: Clustering by means of medoids. In: Dodge, Y. (ed.) Statistical Data Analysis Based on the L1 Norm and Related Methods, pp. 405–416. North Holland/Elsevier, Amsterdam (1987)Google Scholar
  25. 25.
    Lichman, M.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences, http://archive.ics.uci.edu/m (2013)
  26. 26.
    Alcook, R.J., Manolopoulos, Y.: Time-series similarity queries employing a feature-based approach. In: Proceedings of the 7-th Hellenic Conference on Informatics, University of Ioannina (1999)Google Scholar
  27. 27.
    Jeong, Y.S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for time series classification. Pattern Recogn. 44(9), 2231–2240 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Carmela Iorio
    • 1
    Email author
  • Gianluca Frasso
    • 2
  • Antonio D’Ambrosio
    • 3
  • Roberta Siciliano
    • 1
  1. 1.Department of Industrial EngineeringUniversity of Naples Federico IINapoliItaly
  2. 2.Faculté des Sciences SocialesUniversity of LiégeLiégeBelgium
  3. 3.Department of Economics and StatisticsUniversity of Naples Federico IINapoliItaly

Personalised recommendations