From Big Data to Information: Statistical Issues Through a Case Study

  • Serena SignorelliEmail author
  • Silvia Biffignandi
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


The present paper gives a short overview of the use of Big Data for statistical purposes. The introduction of different classifications of Big Data highlights the problems that arise when trying to use them in a statistical way. After that, a small-scale case study is presented by critically highlighting problems and solutions arising out of the transition from Big Data to information; it combines Census data from the Italian NSI with a telecommunication provider dataset.


Big Data Quality Representativeness Communication Mobility 



The authors acknowledge financial support by the ex 60% University of Bergamo, Biffignandi grant.


  1. 1.
    Biemer, P.P.: Dropping the ‘S’ from TSE: Applying the Paradigm to Big Data (2014).
  2. 2.
    Biemer, P.P.: Total survey error: design, implementation, and evaluation. Public Opin. Q. 74(5), 817–848 (2010)CrossRefGoogle Scholar
  3. 3.
    Dufty, D., Brard, H., Reedman, L., Lefranc, S., Signore, M., Munoz, J., Ordaz, E., Struijs, P., Maslankowski, J., MaRozkrut, D., Nikic, B., Jansen, R., Kovacs, K., Jug, M.: A Suggested Framework for National Statistical Offices for assessing the Quality of Big Data, Deliverables of the UNECE Big Data Quality Task Team (2014).
  4. 4.
    Elliott, M.R.: Combining data from probability and non-probability samples using pseudo-weights. Surv. Pract. 2(6), 1–7 (2009)CrossRefGoogle Scholar
  5. 5.
    Fan, J., Han, F., Liu, H.: Challenges of Big Data analysis. Natl. Sci. Rev. 1(2), 293–314 (2014)CrossRefGoogle Scholar
  6. 6.
    Japec, L., Kreuter, F., Berg, M., Biemer, P., Decker, P., Lampe, C., Lane, J., O’Neil, C., Usher, A.: Big Data in survey research: AAPOR task force report. Public Opin. Q. 79(4), 839–880 (2015)CrossRefGoogle Scholar
  7. 7.
    Kitchin, R.: The opportunities, challenges and risks of Big Data for official statistics. J. Int. Assoc. Official Stat. 31, 471–481 (2015)Google Scholar
  8. 8.
    Laney, D.: 3D data management: controlling data volume, velocity, and variety. META Group Research Note, 6 (2001).
  9. 9.
    OECD: Quality Framework and Guidelines for OECD Statistical Activities, OECD (2012).
  10. 10.
    Saha, B., Srivastava, D.: Data quality: the other face of Big Data. In: International Conference on Data Engineering (ICDE), IEEE, pp. 1294–1297 (2014).

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of BergamoBergamoItaly

Personalised recommendations