Skip to main content

Therapeutic Potential of Mesenchymal Stem Cells and miRNAs in Diabetes

  • Chapter
  • First Online:
  • 626 Accesses

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Diabetes mellitus is a group of metabolic disease characterized by insufficient insulin secretion from β cells that usually leads to changes in glucose homeostasis. Autoimmune destruction of β cells in type 1 diabetes and reduced insulin sensitivity in type 2 contribute to diabetes and its complications. Approximately 364 million people are diagnosed with diabetes. Transplantation of whole pancreas or isolated islets could be a cure for diabetes. However, its limited by the scarcity of the donors. In recent years, mesenchymal stem cells have been used for tissue regeneration and opened new clinical avenues for treatment of diabetes mellitus. MSCs, the major stem cells for cell therapy, are therapeutic agent to treat diabetic complications, including diabetic cardiomyopathy diabetic retinopathy, diabetic polyneuropathy, diabetic nephropathy, and diabetic wounds. Another important issue that is provided in this chapter are microRNAs and their important roles in diabetes. miRNAs are a class of small noncoding RNA that are involved in many physiological processes. Distinct modification in blood miRNAs profile is seen in both types of diabetes. So, measurements of the level of specific miRNAs may become useful approaches to identify individuals at risk for developing diabetes mellitus and its complications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  • Barzilay R, Ben-Zur T, Bulvik S, Melamed E, Offen D (2009) Lentiviral delivery of LMX1a enhances dopaminergic phenotype in differentiated human bone marrow mesenchymal stem cells. Stem Cells Dev 18(4):591–601

    Article  CAS  PubMed  Google Scholar 

  • Bernardi S, Severini GM, Zauli G, Secchiero P (2012) Cell-based therapies for diabetic complications. Exp Diabetes Res 872504(10):9

    Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra V, G S, Phadnis S, Nair PD, Bhonde RR (2009) Generation of pancreatic hormone-expressing islet-like cell aggregates from murine adipose tissue-derived stem cells. Stem Cells 27(8):1941–1953

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Niu D, Zhou H, Li F, Gong F (2007) Mesenchymal stem cells contribute to insulin-producing cells upon microenvironmental manipulation in vitro. Transplant Proc 39(10):3363–8

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Wang X, Niu D, Zhang Z, Zhao H, Gong F (2009) Mesenchymal stem cells adopt beta-cell fate upon diabetic pancreatic microenvironment. Pancreas 38(3):275–281

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Lan HY, Roukos DH, Cho WC (2014) Application of microRNAs in diabetes mellitus. J Endocrinol 222(1):R1–R10

    Article  CAS  PubMed  Google Scholar 

  • Cheng T, Yang C, Weber N, Kim HT, Kuo AC (2012) Fibroblast growth factor 2 enhances the kinetics of mesenchymal stem cell chondrogenesis. Biochem Biophys Res Commun 426(4):544–550

    Article  CAS  PubMed  Google Scholar 

  • De Keyser J (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 58(4):653–654. author reply 654–5

    Article  PubMed  Google Scholar 

  • Diagnosis and classification of diabetes mellitus (2014) Diabetes Care 37(1):dc14–S081

    Google Scholar 

  • Ding DC, Shyu WC, Lin SZ (2011) Mesenchymal stem cells. Cell Transplant 20(1):5–14

    Article  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  • Erener S, Mojibian M, Fox JK, Denroche HC, Kieffer TJ (2013) Circulating miR-375 as a biomarker of beta-cell death and diabetes in mice. Endocrinology 154(2):603–608

    Article  CAS  PubMed  Google Scholar 

  • Fedyunina IA, Rzhaninova AA, Kirienko EE, Goldshtein DV (2011) Isolation of insulin-producing cells from different populations of multipotent stromal cells of the umbilical cord and human adipose tissue. Bull Exp Biol Med 151(1):114–120

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4(5):267–274

    CAS  PubMed  Google Scholar 

  • Gabr MM, Zakaria MM, Refaie AF, Khater SM, Ashamallah SA, Ismail AM et al (2015) Differentiation of human bone marrow-derived mesenchymal stem cells into insulin-producing cells: evidence for further maturation in vivo. Biomed Res Int 575837(10):12

    Google Scholar 

  • Gauthier BR, Wollheim CB (2006) MicroRNAs: ‘ribo-regulators’ of glucose homeostasis. Nat Med 12(1):36–38

    Article  CAS  PubMed  Google Scholar 

  • Gruessner AC, Sutherland DE, Gruessner RW (2012) Long-term outcome after pancreas transplantation. Curr Opin Organ Transplant 17(1):100–105

    Article  PubMed  Google Scholar 

  • Guay C, Regazzi R (2013) Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 9(9):513–521

    Article  CAS  PubMed  Google Scholar 

  • Hernandez RM, Orive G, Murua A, Pedraz JL (2010) Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 62(7–8):711–730

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Yu X, Wang Z, Wang F, Wang L, Gao H et al (2013) Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr J 60(3):347–357

    Article  CAS  PubMed  Google Scholar 

  • Hwang NS, Zhang C, Hwang YS, Varghese S (2009) Mesenchymal stem cell differentiation and roles in regenerative medicine. Wiley Interdiscip Rev Syst Biol Med 1(1):97–106

    Article  CAS  PubMed  Google Scholar 

  • Jafarian A, Taghikhani M, Abroun S, Pourpak Z, Allahverdi A, Soleimani M (2014) Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells. Mol Biol Rep 41(7):4783–94

    Article  CAS  PubMed  Google Scholar 

  • Jafarian A, Taghikani M, Abroun S, Allahverdi A, Lamei M, Lakpour N et al (2015) The generation of insulin producing cells from human mesenchymal stem cells by MiR-375 and anti-MiR-9. PLoS One 10(6):e0128650

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamiolkowski RM, Guo LY, Li YR, Shaffer SM, Naji A (2012) Islet transplantation in type I diabetes mellitus. Yale J Biol Med 85(1):37–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong JO, Han JW, Kim JM, Cho HJ, Park C, Lee N et al (2011) Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ Res 108(11):1340–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joglekar MV, Joglekar VM, Hardikar AA (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9(2):109–113

    Article  CAS  PubMed  Google Scholar 

  • Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS (2003) Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 183(2):355–366

    Article  CAS  PubMed  Google Scholar 

  • Kantharidis P, Wang B, Carew RM, Lan HY (2003) Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 183(2):355–366

    Article  Google Scholar 

  • Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S (2007) Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 25(11):2837–44

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Kim H, Cho H, Bae Y, Suh K, Jung J (2007) Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem 20(6):867–876

    Article  CAS  PubMed  Google Scholar 

  • Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5(8):e203

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolfschoten IG, Roggli E, Nesca V, Regazzi R (2009) Role and therapeutic potential of microRNAs in diabetes. Diabetes Obes Metab 4:118–129

    Article  Google Scholar 

  • Liu M, Han ZC (2008) Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. J Cell Mol Med 12(4):1155–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389(3):305–312

    Article  CAS  PubMed  Google Scholar 

  • Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W et al (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91(8):1017–1026

    CAS  PubMed  Google Scholar 

  • Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S et al (2011) Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 92(1):26–36

    Article  PubMed  Google Scholar 

  • Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H (2013) Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med 2(6):455–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Naghdi M, Tiraihi T, Namin SA, Arabkheradmand J (2009) Transdifferentiation of bone marrow stromal cells into cholinergic neuronal phenotype: a potential source for cell therapy in spinal cord injury. Cytotherapy 11(2):137–152

    Article  CAS  PubMed  Google Scholar 

  • Newman RE, Yoo D, LeRoux MA, Danilkovitch-Miagkova A (2009) Treatment of inflammatory diseases with mesenchymal stem cells. Inflamm Allergy Drug Targets 8(2):110–123

    Article  CAS  PubMed  Google Scholar 

  • Parekh VS, Joglekar MV, Hardikar AA (2009) Differentiation of human umbilical cord blood-derived mononuclear cells to endocrine pancreatic lineage. Differentiation 78(4):232–240

    Article  CAS  PubMed  Google Scholar 

  • Patel DM, Shah J, Srivastava AS (2013) Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int 496218(10):19

    Google Scholar 

  • Pavlova G, Lopatina T, Kalinina N, Rybalkina E, Parfyonova Y, Tkachuk V et al (2012) In vitro neuronal induction of adipose-derived stem cells and their fate after transplantation into injured mouse brain. Curr Med Chem 19(30):5170–7

    Article  CAS  PubMed  Google Scholar 

  • Pendleton C, Li Q, Chesler DA, Yuan K, Guerrero-Cazares H, Quinones-Hinojosa A (2013) Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas. PLoS ONE 8(3):12

    Article  Google Scholar 

  • Phadnis SM, Joglekar MV, Dalvi MP, Muthyala S, Nair PD, Ghaskadbi SM et al (2011) Human bone marrow-derived mesenchymal cells differentiate and mature into endocrine pancreatic lineage in vivo. Cytotherapy 13(3):279–293

    Article  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  • Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 106(14):5813–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U (2011) Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets. FEBS J 278(7):1167–1174

    Article  CAS  PubMed  Google Scholar 

  • Rehman KK, Trucco M, Wang Z, Xiao X, Robbins PD (2008) AAV8-mediated gene transfer of interleukin-4 to endogenous beta-cells prevents the onset of diabetes in NOD mice. Mol Ther 16(8):1409–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Rooij E (2011) The art of microRNA research. Circ Res 108(2):219–234

    Article  PubMed  Google Scholar 

  • Rooney GE, Howard L, O'Brien T, Windebank AJ, Barry FP (2009) Elevation of cAMP in mesenchymal stem cells transiently upregulates neural markers rather than inducing neural differentiation. Stem Cells Dev 18(3):387–398

    Article  CAS  PubMed  Google Scholar 

  • Sàrl MI (2008) PROCHYMAL® (human adult stem cells) for the treatment of recently diagnosed Type 1 Diabetes Mellitus (T1DM). Clinical Trials.gov

    Google Scholar 

  • Sebastiani G, Grieco FA, Spagnuolo I, Galleri L, Cataldo D, Dotta F (2011) Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab Res Rev 27(8):862–866

    Article  CAS  PubMed  Google Scholar 

  • Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L et al (2008) A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res 18(8):846–857

    Article  CAS  PubMed  Google Scholar 

  • Snove O Jr, Rossi JJ (2006) Expressing short hairpin RNAs in vivo. Nat Methods 3(9):689–695

    Article  CAS  PubMed  Google Scholar 

  • Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33(6):919–926

    Article  PubMed  Google Scholar 

  • Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA et al (2004) In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53(7):1721–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teven CM, Liu X, Hu N, Tang N, Kim SH, Huang E et al (2011) Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int 201371(10):11

    Google Scholar 

  • Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC et al (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137(6):1032–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M (2011) Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells 29(1):5–10

    Article  CAS  PubMed  Google Scholar 

  • Wakao S, Kuroda Y, Ogura F, Shigemoto T, Dezawa M (2012) Regenerative effects of mesenchymal stem cells: contribution of muse cells, a novel pluripotent stem cell type that resides in mesenchymal cells. Cell 1(4):1045–1060

    Article  CAS  Google Scholar 

  • Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34(6):747–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu YX, Chen L, Wang R, Hou WK, Lin P, Sun L et al (2008) Mesenchymal stem cell therapy for diabetes through paracrine mechanisms. Med Hypotheses 71(3):390–393

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Farwell MA (2008) microRNAs: a new emerging class of players for disease diagnostics and gene therapy. J Cell Mol Med 12(1):3–21

    Article  CAS  PubMed  Google Scholar 

  • Zhang YN, Lie PC, Wei X (2009) Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton’s jelly into hepatocyte-like cells. Cytotherapy 11(5):548–558

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Mohan R, Ozcan S, Tang X (2012) MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic beta-cells. J Biol Chem 287(37):31155–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao F, Qu Y, Liu H, Du B, Mu D (2014) Umbilical cord blood mesenchymal stem cells co-modified by TERT and BDNF: a novel neuroprotective therapy for neonatal hypoxic-ischemic brain damage. Int J Dev Neurosci 38:147–154

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B et al (2001) Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50(3):521–533

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arefeh Jafarian PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jafarian, A., Soleimani, M. (2017). Therapeutic Potential of Mesenchymal Stem Cells and miRNAs in Diabetes. In: Pham, P. (eds) Pancreas, Kidney and Skin Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-55687-1_5

Download citation

Publish with us

Policies and ethics