Skip to main content

New Advances in Stem Cell Therapy for Diabetes Mellitus

  • Chapter
  • First Online:
Pancreas, Kidney and Skin Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

  • 660 Accesses

Abstract

Intense research aimed to find solutions for the cure of diabetes mellitus, based on stem cell therapy to replace hypoglycemic drug or insulin administration, has been conducted over the past decades. A variety of stem cells, including induced pluripotent stem cells, embryonic stem cells, or adult stem cells such as bone marrow-, adipose tissue-, and Wharton jelly-derived stem cells, have demonstrated their ability to differentiate into insulin-producing cells and secret insulin in response to high-glucose stimulation. However, achievement of the final goal for routinely clinical application of stem cell therapy is still out of reach. In this chapter, new advances in stem cell therapy for diabetes mellitus were reviewed and discussed in attempt to clarify where we are and how we may go to reach the final goal of the cure of diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57(7):1759–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alipio Z, Liao W, Roemer EJ, Waner M, Fink LM, Ward DC et al (2010) Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci U S A 107(30):13426–13431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • American Diabetes A (2011) Diagnosis and classification of diabetes mellitus. Diabetes Care 34(Suppl 1):S62–S69

    Article  CAS  Google Scholar 

  • Anzalone R, Lo Iacono M, Loria T, Di Stefano A, Giannuzzi P, Farina F et al (2011) Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev 7(2):342–363

    Article  PubMed  Google Scholar 

  • Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K et al (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321(5889):699–702

    Article  CAS  PubMed  Google Scholar 

  • Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25(6):1384–1392

    Article  CAS  PubMed  Google Scholar 

  • Bar-Nur O, Russ HA, Efrat S, Benvenisty N (2011) Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Bassi EJ, Moraes-Vieira PM, Moreira-Sa CS, Almeida DC, Vieira LM, Cunha CS et al (2012) Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes 61(10):2534–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I et al (2003) Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem 278(34):31950–31957

    Article  CAS  PubMed  Google Scholar 

  • Blum B, Benvenisty N (2009) The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle 8(23):3822–3830

    Article  CAS  PubMed  Google Scholar 

  • Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE (1993) A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 42(12):1715–1720

    Article  CAS  PubMed  Google Scholar 

  • Bonner-Weir S, Li WC, Ouziel-Yahalom L, Guo L, Weir GC, Sharma A (2010) Beta-cell growth and regeneration: replication is only part of the story. Diabetes 59(10):2340–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boumaza I, Srinivasan S, Witt WT, Feghali-Bostwick C, Dai Y, Garcia-Ocana A et al (2009) Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun 32(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Brennand K, Huangfu D, Melton D (2007) All beta cells contribute equally to islet growth and maintenance. PLoS Biol 5(7):e163

    Article  PubMed  PubMed Central  Google Scholar 

  • Calafiore R, Basta G (2015) Stem cells for the cell and molecular therapy of type 1 diabetes mellitus (T1D): the gap between dream and reality. Am J Stem Cells 4(1):22–31

    PubMed  PubMed Central  Google Scholar 

  • Cefalu WT (2012) American diabetes association-European association for the study of diabetes position statement: due diligence was conducted. Diabetes Care 35(6):1201–1203

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandra V, Swetha G, Phadnis S, Nair PD, Bhonde RR (2009) Generation of pancreatic hormone-expressing islet-like cell aggregates from murine adipose tissue-derived stem cells. Stem Cells 27(8):1941–1953

    Article  CAS  PubMed  Google Scholar 

  • Chao KC, Chao KF, Fu YS, Liu SH (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 3(1):e1451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen S, Borowiak M, Fox JL, Maehr R, Osafune K, Davidow L et al (2009) A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 5(4):258–265

    Article  CAS  PubMed  Google Scholar 

  • Chhabra P, Brayman KL (2013) Stem cell therapy to cure type 1 diabetes: from hype to hope. Stem Cells Transl Med 2(5):328–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–1401

    Article  PubMed  CAS  Google Scholar 

  • D’Souza DM, Al-Sajee D, Hawke TJ (2013) Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol 4:379

    PubMed  PubMed Central  Google Scholar 

  • Delorme B, Ringe J, Gallay N, Le Vern Y, Kerboeuf D, Jorgensen C et al (2008) Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 111(5):2631–2635

    Article  CAS  PubMed  Google Scholar 

  • Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T et al (2011) Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant 20(5):655–667

    Article  PubMed  Google Scholar 

  • Ding Y, Xu D, Feng G, Bushell A, Muschel RJ, Wood KJ (2009) Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes 58(8):1797–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yanez AJ, Conget PA (2008) Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant 14(6):631–640

    Article  CAS  Google Scholar 

  • Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S et al (2009) Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol 183(2):993–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorina P, Voltarelli J, Zavazava N (2011) Immunological applications of stem cells in type 1 diabetes. Endocr Rev 32(6):725–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T et al (2011) Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 43(1):34–41

    Article  CAS  PubMed  Google Scholar 

  • Gispen WH, Biessels GJ (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23(11):542–549

    Article  CAS  PubMed  Google Scholar 

  • Golestaneh N, Kokkinaki M, Pant D, Jiang J, DeStefano D, Fernandez-Bueno C et al (2009) Pluripotent stem cells derived from adult human testes. Stem Cells Dev 18(8):1115–1126

    Article  PubMed  PubMed Central  Google Scholar 

  • Groop LC, Eriksson JG (1992) The etiology and pathogenesis of non-insulin-dependent diabetes. Ann Med 24(6):483–489

    Article  CAS  PubMed  Google Scholar 

  • Group CR (2009) 2007 update on allogeneic islet transplantation from the Collaborative Islet Transplant Registry (CITR). Cell Transplant 18(7):753–767

    Article  Google Scholar 

  • Halban PA, German MS, Kahn SE, Weir GC (2010) Current status of islet cell replacement and regeneration therapy. J Clin Endocrinol Metab 95(3):1034–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M et al (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133(2):250–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashemian SJ, Kouhnavard M, Nasli-Esfahani E (2015) Mesenchymal stem cells: rising concerns over their application in treatment of type one diabetes mellitus. J Diabetes Res 2015:675103

    Article  PubMed  PubMed Central  Google Scholar 

  • He D, Wang J, Gao Y, Zhang Y (2011) Differentiation of PDX1 gene-modified human umbilical cord mesenchymal stem cells into insulin-producing cells in vitro. Int J Mol Med 28(6):1019–1024

    CAS  PubMed  Google Scholar 

  • Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B et al (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21(7):763–770

    Article  CAS  PubMed  Google Scholar 

  • Ho JH, Tseng TC, Ma WH, Ong WK, Chen YF, Chen MH et al (2012) Multiple intravenous transplantations of mesenchymal stem cells effectively restore long-term blood glucose homeostasis by hepatic engraftment and beta-cell differentiation in streptozotocin-induced diabetic mice. Cell Transplant 21(5):997–1009

    Article  PubMed  Google Scholar 

  • Hu J, Yu X, Wang Z, Wang F, Wang L, Gao H et al (2013) Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr J 60(3):347–357

    Article  CAS  PubMed  Google Scholar 

  • Hua H, Shang L, Martinez H, Freeby M, Gallagher MP, Ludwig T et al (2013) iPSC-derived beta cells model diabetes due to glucokinase deficiency. J Clin Invest 123(7):3146–3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH (2002) Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells 20(3):249–258

    Article  PubMed  Google Scholar 

  • Jeon K, Lim H, Kim JH, Thuan NV, Park SH, Lim YM et al (2012) Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model. Stem Cells Dev 21(14):2642–2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurewicz M, Yang S, Augello A, Godwin JG, Moore RF, Azzi J et al (2010) Congenic mesenchymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes. Diabetes 59(12):3139–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karaoz E, Okcu A, Unal ZS, Subasi C, Saglam O, Duruksu G (2013) Adipose tissue-derived mesenchymal stromal cells efficiently differentiate into insulin-producing cells in pancreatic islet microenvironment both in vitro and in vivo. Cytotherapy 15(5):557–570

    Article  CAS  PubMed  Google Scholar 

  • Kelly OG, Chan MY, Martinson LA, Kadoya K, Ostertag TM, Ross KG et al (2011) Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 29(8):750–756

    Article  CAS  PubMed  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Kim H, Cho H, Bae Y, Suh K, Jung J (2007) Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem: Int J Exp Cell Physiol Biochem Pharmacol 20(6):867–876

    Article  CAS  Google Scholar 

  • Kim SJ, Choi YS, Ko ES, Lim SM, Lee CW, Kim DI (2012) Glucose-stimulated insulin secretion of various mesenchymal stem cells after insulin-producing cell differentiation. J Biosci Bioeng 113(6):771–777

    Article  CAS  PubMed  Google Scholar 

  • Knoepfler PS (2008) Why myc? An unexpected ingredient in the stem cell cocktail. Cell Stem Cell 2(1):18–21

    Article  CAS  PubMed  Google Scholar 

  • Knoepfler PS (2009) Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27(5):1050–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima H, Fujimiya M, Matsumura K, Nakahara T, Hara M, Chan L (2004) Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc Natl Acad Sci U S A 101(8):2458–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kooreman NG, Wu JC (2010) Tumorigenicity of pluripotent stem cells: biological insights from molecular imaging. J R Soc Interface/R Soc 7(Suppl 6):S753–S763

    Article  Google Scholar 

  • Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26(4):443–452

    Article  CAS  PubMed  Google Scholar 

  • La Rocca G, Anzalone R, Corrao S, Magno F, Loria T, Lo Iacono M et al (2009) Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol 131(2):267–282

    Article  PubMed  CAS  Google Scholar 

  • Larijani B, Esfahani EN, Amini P, Nikbin B, Alimoghaddam K, Amiri S et al (2012) Stem cell therapy in treatment of different diseases. Acta Med Iran 50(2):79–96

    PubMed  Google Scholar 

  • Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K et al (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem: Int J Exp Cell Physiol Biochem Pharmacol 14(4–6):311–324

    Article  CAS  Google Scholar 

  • Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD et al (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A 103(46):17438–17443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Ikehara S (2013) Bone marrow stem cell as a potential treatment for diabetes. J Diabetes Res 2013:329596

    PubMed  PubMed Central  Google Scholar 

  • Liew CG, Shah NN, Briston SJ, Shepherd RM, Khoo CP, Dunne MJ et al (2008) PAX4 enhances beta-cell differentiation of human embryonic stem cells. PLoS One 3(3):e1783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Wang Y, Li Y, Pei X (2013) Research status and prospect of stem cells in the treatment of diabetes mellitus. Sci China Life Sci 56(4):306–312

    Article  CAS  PubMed  Google Scholar 

  • Lo B, Parham L (2009) Ethical issues in stem cell research. Endocr Rev 30(3):204–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292(5520):1389–1394

    Article  CAS  PubMed  Google Scholar 

  • Madec AM, Mallone R, Afonso G, Abou Mrad E, Mesnier A, Eljaafari A et al (2009) Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia 52(7):1391–1399

    Article  CAS  PubMed  Google Scholar 

  • Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R et al (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci U S A 106(37):15768–15773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matveyenko A, Vella A (2015) Regenerative medicine in diabetes. Mayo Clin Proc 90(4):546–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H (2013) Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med 2(6):455–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Mfopou JK, Chen B, Sui L, Sermon K, Bouwens L (2010a) Recent advances and prospects in the differentiation of pancreatic cells from human embryonic stem cells. Diabetes 59(9):2094–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mfopou JK, Chen B, Mateizel I, Sermon K, Bouwens L (2010b) Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. Gastroenterology 138(7):2233–2245. 45 e1–14

    Article  CAS  PubMed  Google Scholar 

  • Montanucci P, Basta G, Pescara T, Pennoni I, Di Giovanni F, Calafiore R (2011) New simple and rapid method for purification of mesenchymal stem cells from the human umbilical cord Wharton jelly. Tissue Eng Part A 17(21–22):2651–2661

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106

    Article  CAS  PubMed  Google Scholar 

  • Nostro MC, Sarangi F, Ogawa S, Holtzinger A, Corneo B, Li X et al (2011) Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138(5):861–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE (2004) Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest; J Tech Methods Pathol 84(5):607–617

    Article  CAS  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953

    Article  CAS  PubMed  Google Scholar 

  • Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22(3):377–384

    Article  PubMed  Google Scholar 

  • Palmer JP (2009) C-peptide in the natural history of type 1 diabetes. Diabetes Metab Res Rev 25(4):325–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pendleton C, Li Q, Chesler DA, Yuan K, Guerrero-Cazares H, Quinones-Hinojosa A (2013) Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas. PLoS One 8(3):e58198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pileggi A (2012) Mesenchymal stem cells for the treatment of diabetes. Diabetes 61(6):1355–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • Reger RL, Tucker AH, Wolfe MR (2008) Differentiation and characterization of human MSCs. Methods Mol Biol 449:93–107

    CAS  PubMed  Google Scholar 

  • Ren G, Su J, Zhang L, Zhao X, Ling W, L’Huillie A et al (2009) Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27(8):1954–1962

    Article  CAS  PubMed  Google Scholar 

  • Ricordi C, Inverardi L, Dominguez-Bendala J (2012) From cellular therapies to tissue reprogramming and regenerative strategies in the treatment of diabetes. Regen Med 7(6 Suppl):41–48

    Article  CAS  PubMed  Google Scholar 

  • Rolletschek A, Kania G, Wobus AM (2006) Generation of pancreatic insulin-producing cells from embryonic stem cells – ‘proof of principle’, but questions still unanswered. Diabetologia 49(11):2541–2545

    Article  CAS  PubMed  Google Scholar 

  • Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21(1):105–110

    Article  PubMed  Google Scholar 

  • Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells – basic and clinical implications for novel cell-based therapies. Stem Cells 25(4):818–827

    Article  PubMed  CAS  Google Scholar 

  • Shim JH, Kim SE, Woo DH, Kim SK, Oh CH, McKay R et al (2007) Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia 50(6):1228–1238

    Article  CAS  PubMed  Google Scholar 

  • Sipione S, Eshpeter A, Lyon JG, Korbutt GS, Bleackley RC (2004) Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia 47(3):499–508

    Article  CAS  PubMed  Google Scholar 

  • Smukler SR, Arntfield ME, Razavi R, Bikopoulos G, Karpowicz P, Seaberg R et al (2011) The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 8(3):281–293

    Article  CAS  PubMed  Google Scholar 

  • Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49(2):157–162

    Article  CAS  PubMed  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322(5903):945–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Tang DQ, Wang Q, Burkhardt BR, Litherland SA, Atkinson MA, Yang LJ (2012) In vitro generation of functional insulin-producing cells from human bone marrow-derived stem cells, but long-term culture running risk of malignant transformation. Am J Stem Cells 1(2):114–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tateishi K, He J, Taranova O, Liang G, D’Alessio AC, Zhang Y (2008) Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283(46):31601–31607

    Article  CAS  PubMed  Google Scholar 

  • Teo AK, Wagers AJ, Kulkarni RN (2013) New opportunities: harnessing induced pluripotency for discovery in diabetes and metabolism. Cell Metab 18(6):775–791

    Article  CAS  PubMed  Google Scholar 

  • Thatava T, Nelson TJ, Edukulla R, Sakuma T, Ohmine S, Tonne JM et al (2011) Indolactam V/GLP-1-mediated differentiation of human iPS cells into glucose-responsive insulin-secreting progeny. Gene Ther 18(3):283–293

    Article  CAS  PubMed  Google Scholar 

  • Thatava T, Kudva YC, Edukulla R, Squillace K, De Lamo JG, Khan YK et al (2013) Intrapatient variations in type 1 diabetes-specific iPS cell differentiation into insulin-producing cells. Mol Ther: J Am Soc Gene Ther 21(1):228–239

    Article  CAS  Google Scholar 

  • Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U et al (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 341(4):1135–1140

    Article  CAS  PubMed  Google Scholar 

  • Tsai PJ, Wang HS, Shyr YM, Weng ZC, Tai LC, Shyu JF et al (2012) Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats. J Biomed Sci 19:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnovcova K, Ruzickova K, Vanecek V, Sykova E, Jendelova P (2009) Properties and growth of human bone marrow mesenchymal stromal cells cultivated in different media. Cytotherapy 11(7):874–885

    Article  CAS  PubMed  Google Scholar 

  • Urban VS, Kiss J, Kovacs J, Gocza E, Vas V, Monostori E et al (2008) Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 26(1):244–253

    Article  CAS  PubMed  Google Scholar 

  • Vajdic CM, van Leeuwen MT (2009) Cancer incidence and risk factors after solid organ transplantation. Int J Cancer J Int Cancer 125(8):1747–1754

    Article  CAS  Google Scholar 

  • Wang HS, Shyu JF, Shen WS, Hsu HC, Chi TC, Chen CP et al (2011) Transplantation of insulin-producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplant 20(3):455–466

    Article  CAS  PubMed  Google Scholar 

  • Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S et al (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 24(3):781–792

    Article  CAS  PubMed  Google Scholar 

  • Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, Vander Werff I et al (2008) Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26(11):2865–2874

    Article  CAS  PubMed  Google Scholar 

  • Wernig M, Meissner A, Cassady JP, Jaenisch R (2008) c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2(1):10–12

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Mahato RI (2014) Mesenchymal stem cell-based therapy for type 1 diabetes. Discov Med 17(93):139–143

    PubMed  Google Scholar 

  • Xie QP, Huang H, Xu B, Dong X, Gao SL, Zhang B et al (2009) Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differ Res Biol Divers 77(5):483–491

    Article  CAS  Google Scholar 

  • Xu X, Browning VL, Odorico JS (2011) Activin, BMP and FGF pathways cooperate to promote endoderm and pancreatic lineage cell differentiation from human embryonic stem cells. Mech Dev 128(7–10):412–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Yang LJ (2006) Liver stem cell-derived beta-cell surrogates for treatment of type 1 diabetes. Autoimmun Rev 5(6):409–413

    Article  CAS  PubMed  Google Scholar 

  • Yechoor V, Liu V, Espiritu C, Paul A, Oka K, Kojima H et al (2009) Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev Cell 16(3):358–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaret KS, Grompe M (2008) Generation and regeneration of cells of the liver and pancreas. Science 322(5907):1490–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S et al (2009) Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 19(4):429–438

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Wang Y, Wang D, Sun B, Wang G, Wang J et al (2008) TGF-beta expression by allogeneic bone marrow stromal cells ameliorates diabetes in NOD mice through modulating the distribution of CD4+ T cell subsets. Cell Immunol 253(1–2):23–30

    Article  CAS  PubMed  Google Scholar 

  • Zhu FF, Zhang PB, Zhang DH, Sui X, Yin M, Xiang TT et al (2011) Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells. Diabetologia 54(9):2325–2336

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanjie Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lei, L., Mao, Y. (2017). New Advances in Stem Cell Therapy for Diabetes Mellitus. In: Pham, P. (eds) Pancreas, Kidney and Skin Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-55687-1_4

Download citation

Publish with us

Policies and ethics