Skip to main content

Wound Treatment by Stem Cells

  • Chapter
  • First Online:
Pancreas, Kidney and Skin Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

  • 641 Accesses

Abstract

Various experimental or clinical studies in the literature have demonstrated the benefits of stem cells, especially mesenchymal stem cells. This chapter will focus on existing stem cell technologies and their applications in the treatment of wound healing. To understand mechanisms of stem cells in wound healing, we will go over the structure of most commonly wounded tissues, namely, skin, which consist of epithelia and connective tissue. Then we will explain wound healing process with three stages as inflammation, proliferation, and remodeling and the roles of tissue components during wound healing. Treatment of wounds is directly related with the cause, location, and degree of the wound. Therefore, we will describe common wound types with causes under two categories as acute and chronic. We will explain stem cell types which play an important role in tissue regeneration and wound healing in adult life owing to their high competency and self-renewal features. Here, we will give examples of various studies on various wound types with or without underlying diseases. Finally, we will describe recently developed methods such as the use of cells' own products, exosomes, and demonstrate the results of exosome therapies on chronic wounds with most recent examples on human trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akash MS, Rehman K, Chen S (2013) Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem 114(3):525–531

    Article  CAS  PubMed  Google Scholar 

  • Arya AK, Tripathi R, Kumar S, Tripathi K (2014) Recent advances on the association of apoptosis in chronic non healing diabetic wound. World J Diabetes 5(6):756–762

    Article  PubMed  PubMed Central  Google Scholar 

  • Balbach ST, Cavaleri FM, Gentile L, Araúzo-Bravo MJ, Schöler HR, Crosetto N, Boiani M (2009) Observing and manipulating pluripotency in normal and cloned mouse embryos. In: Baharvand H (ed) Trends in stem cell biology and technology. Humana Press, New York, p 101

    Chapter  Google Scholar 

  • Barbul A, Breslin JR, Woodyard JP, Wasserkrug HL, Efron G (1989) The effect of in vivo T helper and T suppressor lymphocyte depletion on wound healing. Ann Surg 209:479–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman DM, Willman MA, Han D et al (2010) Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes 59:2558–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besse JL, Leemrijse T, Deleu PA (2011) Diabetic foot: the orthopedic surgery angle. Orthop Traumatol Surg Res 97:314–329

    Article  PubMed  Google Scholar 

  • Black IB, Woodbury D (2001) Adult rat and human bone marrow stromal stem cells differentiate into neurons. Blood Cells Mol Dis 27:632–636

    Article  CAS  PubMed  Google Scholar 

  • Blumberg SN, Berger A, Hwang L, Pastar I, Warren SM, Chen W (2012) The role of stem cells in the treatment of diabetic foot ulcers. Diabetes Res Clin Pract 96(1):1–9

    Article  PubMed  Google Scholar 

  • Bura A, Planat-Benard V, Bourin P, Silvestre JS, Gross F, Grolleau JL, Saint-Lebese B, Peyrafitte JA, Fleury S, Gadelorge M, Taurand M, Dupuis-Coronas S, Leobon B, Casteilla L (2014) Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy 16(2):245–257

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh P, Attinger C, Abbas Z, Bal A, Rojas N, Xu ZR (2012) Cost of treating diabetic foot ulcers in five different countries. Diabetes Metab Res Rev 28(Suppl 1):107–111

    Article  PubMed  Google Scholar 

  • Charles Brunicardi F, Andersen DK, Billiar TR, Dunn DL, Hunter JG, Matthews JB, Raphael E (2005). Pollock, Schwartz’s principles of surgery, Chapter 9. Wound healing

    Google Scholar 

  • De Francesco F, Graziano A, Trovato L, Ceccarelli G, Romano M, Marcarelli M, Cusella De Angelis GM, Cillo U, Riccio M, Ferraro GA (2016) A regenerative approach with dermal micrografts in the treatment of chronic ulcers. Stem Cell Rev 13(1):139–148

    Google Scholar 

  • Ding Y, Xu D, Feng G, Bushell A, Muschel RJ, Wood KJ (2009) Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes 58:1797–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draper JS, Seguin CA, Andrews PW (2007) Phenotypic analyses of human embryonic stem cells. In: Sullivan S, Cowan CA, Eggan K (eds) Human embryonic stem cells: the practical handbook. Wiley, Cambridge, MA, pp 93–106

    Google Scholar 

  • Duque GA, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491

    Google Scholar 

  • Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, Gurtner GC (2016) Stem cells in wound healing: the future of regenerative medicine? Mini-Rev Gerontol 62(2):216–225

    Article  CAS  Google Scholar 

  • Ertekin C, Taviloğlu K, Güloğlu R, Kurtoğlu M (2005) İstanbul Medikal Yayıncılık, İstanbul. Travma pp 488–501

    Google Scholar 

  • Fiorina P, Jurewicz M, Augello A et al (2009) Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol 183:993–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritschi C (2001) Preventive care of the diabetic foot. Nurs Clin North Am 36:303–320

    CAS  PubMed  Google Scholar 

  • Game FL, Hinchliffe RJ, Apelqvist J, Armstrong DG, Bakker K, Hartemann A, Löndahl M, Price PE, Jeffcoate WJ (2012) A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes Metab Res Rev 28(Suppl 1):119–141

    Article  PubMed  Google Scholar 

  • Ghatak S, Maytin EV, Mack JA, Hascall VC, Atanelishvili I, Rodriguez RM, Markwald RR, Misra S (2015) Roles of proteoglycans and glycosaminoglycans in wound healing and fibrosis. Int J Cell Biol http://dx.doi.org/10.1155/2015/834893

  • Ghieh F, Jurjus R, Ibrahim A, Geagea AG, Daouk H, El Baba B, Chams S, Matar M, Zein W, Jurjus A (2015) The use of stem cells in burn wound healing: a review. Biomed Res Int 2015:1–9

    Article  Google Scholar 

  • Gupta PK, Krishna M, Chullikana A, Desai S, Murugesan R, Dutta S, Sarkar U, Raju R, Dhar A, Parakh R, Jeyaseelan L, Viswanathan P, Vellotare PK, Seetharam RN, Thej C, Rengasamy M, Balasubramanian S, Majumdar AS (2016) Administration of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells in critical limb ischemia due to Buerger’s disease: phase II study report suggests clinical efficacy. Stem Cells Transl Med. pii: sctm.2016–0237

    Google Scholar 

  • Harrison NJ, Barbaric I, Andrews PW (2011) Human embryonic stem cell characterization: similarities and differences between cell lines and sources. In: Bongso A, Lee EH (eds) Stem cells: from bench to bedside, 2nd edn. World Scientific, Singapore, pp 1–22

    Google Scholar 

  • Jayaraman P, Nathan P, Vasanthan P, Musa S, Govindasamy V (2013) Stem cells conditioned medium: a new approach to skin wound healing management. Cell Biol Int 37(10):1122–1128

    Article  PubMed  Google Scholar 

  • Jiang J, Lv Z, Gu Y, Li J, Xu L, Xu W et al (2010) Adult rat mesenchymal stem cells differentiate into neuronal-like phenotype and express a variety of neuro-regulatory molecules in vitro. Neurosci Res 66:46–52

    Article  CAS  PubMed  Google Scholar 

  • Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S (2007) Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 25:2837–2844

    Article  CAS  PubMed  Google Scholar 

  • Khosrotehrani K (2013) Mesenchymal stem cell therapy in skin: why and what for? Exp Dermatol 22(5):307–310

    Article  PubMed  Google Scholar 

  • Lau TW, Lam FF, Lau KM, Chan YW, Lee KM, Sahota DS et al (2009) Pharmacological investigation on the wound healing effects of Radix Rehmanniae in an animal model of diabetic foot ulcer. J Ethnopharmacol 123:155–162

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ, Park JH, Lee SY, Kim SP, Kim YD, Chung SW, Bae YC, Shin YB, Kim JI, Jung JS (2012) Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J 76(7):1750–1760. Epub 2012 Apr 12

    Article  CAS  PubMed  Google Scholar 

  • Lee DE, Ayoub N, Agrawal DK (2016) Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res Ther 7:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Leirósa GJ, Kusinskya AG, Dragob H, Bossib S, Sturlab F, Castellanosa FL, Stellac IY, Balañáa ME (2014) Dermal papilla cells improve the wound healing process and generate hair Bud-like structures in grafted skin substitutes using hair follicle stem cells. Stem Cells Trans Med 3(10):1209–1219

    Article  Google Scholar 

  • Leung PC (2007) Diabetic foot ulcers – a comprehensive review. Surgeon 5(4):219–231

    Article  CAS  PubMed  Google Scholar 

  • Li XY, Zheng ZH, Li XY, Guo J, Zhang Y, Li H, Wang YW, Ren J, Wu ZB (2013) Treatment of foot disease in patients with type 2 diabetes mellitus using human umbilical cord blood mesenchymal stem cells: response and correction of immunological anomalies. Curr Pharm Des 19(27):4893–4899

    Article  CAS  PubMed  Google Scholar 

  • Li XY, Zheng ZH, Guo J, Zhang Y, Li H, Wang YW, Ren J, Wu ZB (2014) Treatment of foot disease in patients with type 2 diabetes mellitus using human umbilical cord blood mesenchymal stem cells: response and correction of immunological anomalies. Curr Pharm Des 19(27):4893–4899

    Article  Google Scholar 

  • Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, Xu J, Wu Q, Zhang Z, Xie B, Chen S (2011a) Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 92(1):26–36

    Article  PubMed  Google Scholar 

  • Madec AM, Mallone R, Afonso G et al (2009) Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia 52:1391–1399

    Article  CAS  PubMed  Google Scholar 

  • Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci U S A 106:15768–15773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marieb EN (1995) Human anatomy and physiology. Hodder & Stoughton, London, p 103

    Google Scholar 

  • Melton DA, Cowan C (2009) “Stemness”: definitions, criteria and standards. In: Lanza R, Gaerhart J, Hogan B, Melton D, Thomson J, Wilmut I (eds) Essentials of stem cell biology, 2nd edn. Academic Press, San Diego, pp 23–29

    Google Scholar 

  • Metcalfe AD, Ferguson MWJ (2007) Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 4(14):413–437

    Article  CAS  PubMed  Google Scholar 

  • Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M et al (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804

    Article  PubMed  Google Scholar 

  • Nandy D, Mukhopadhyay D (2011) Growth factor mediated signaling in pancreatic pathogenesis. Cancers Basel 3(1):841–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton JA, Bollinger RR, Chang AE, Lowry SF, Mulvihill SJ, Pass HI, Thompson RW (2003) Essential practice of surgery: basic science and clinical evidence. In: Lorenz HP, Longaker MT (eds) Chapter 7: Wounds: biology, pathology and management. Springer, New York, pp 89–94

    Google Scholar 

  • Oskouei BN et al (2012) Increased potency of cardiac stem cells compared with bone marrow mesenchymal stem cells in cardiac repair. Stem Cells Transl Med 1(2):116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozturk S, Karagoz H (2015) Experimental stem cell therapies on burn wound: do source, dose, timing and method matter? Burns 41:1133

    Article  PubMed  Google Scholar 

  • Pawlina W Histology: a text and atlas: with correlated cell and molecular biology. 7th Ed. . Philadelphia Wolters Kluwer. China. Int. Ed. 2016. p. 488–516.

    Google Scholar 

  • Paz JC, West MP. (2014) Acute care handbook for phsical therapists, 4th edn. Saunders, Philadelphia, pp 297–299.

    Google Scholar 

  • Polo JM, Liu S, Figueroa MA, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T, Natesan S, Wagers AJ, Melnick A, Evans T, Hochedlinger K (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM et al (2000) A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 49:1390–1394

    Article  CAS  PubMed  Google Scholar 

  • Sener LT, Albeniz I (2015) Challenge of mesenchymal stem cells against diabetic foot ulcer. Curr Stem Cell Res Ther 10:530–534

    Article  CAS  PubMed  Google Scholar 

  • Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Van Badiavas E (2015) Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev 24(14):1635–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shumakov VI, Onishchenko NA, Rasulov MF, Krasheninnikov ME, Zaidenov VA (2003) Mesenchymal bone marrow stem cells more effectively stimulate regeneration of deep burn wounds than embryonic fibroblasts. Bull Exp Biol Med 136(2):192–195

    Article  CAS  PubMed  Google Scholar 

  • Singer DD, Singer AJ, Gordon C, Brink P (2013) The effects of rat mesenchymal stem cells on injury progression in a rat model. Acad Emerg Med 20(4):398–402

    Article  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Vaccari DA, Strom PF, Alleman JE (2005) Environmental biology for engineers and scientists. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  • Van Koppen CJ, Hartmann RW (2015) Advances in the treatment of chronic wounds: a patent review. Expert Opin Ther Pat 25(8):931–937

    Article  PubMed  Google Scholar 

  • van Zuijlen PPM, Gardien KLM, Jaspers MEH, Bos EJ, Baas DC, van Trier AJM, Middelkoop E (2015) Tissue engineering in burn scar reconstruction. Burns Trauma 3:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffrey Weinzweig (1999) Plastic surgery secrets. Hanley & Belfus Inc. 156053219X, 9781560532194

    Google Scholar 

  • Xue M, Jackson CJ (2015) Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care (New Rochelle) 4(3):119–136

    Article  Google Scholar 

  • Xue L, Xu YB, Xie JL, Tang JM, Shu B, Chen L, Qi SH, Liu XS (2013) Effects of human bone marrow mesenchymal stem cells on burn injury healing in a mouse model. Int J Clin Exp Pathol 6(7):1327–1336

    PubMed  PubMed Central  Google Scholar 

  • Yazdanpanah L, Nasiri M, Adarvishi S (2015) Literature review on the management of diabetic foot ulcer. World J Diabetes 6(1):37–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Yolanda MM, Maria AV, Amaia FG, Marcos PB, Silvia PL et al (2014) Adult stem cell therapy in chronic wound healing. J Stem Cell Res Ther 4:162

    Article  Google Scholar 

  • Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q, Xie Z, Zhang C, Wang Y (2015a) Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 13:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, Shi H, Wu L, Zhu W, Qian H, Xu W (2015b) HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells 33:2158–2168

    Article  CAS  PubMed  Google Scholar 

  • Zhao QS, Xia N, Zhao N, Li M, Bi CL, Zhu Q, Qiao GF, Cheng ZF (2014) Localization of human mesenchymal stem cells from umbilical cord blood and their role in repair of diabetic foot ulcer in rat. Int J Biol Sci 10(1):80–89

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Prof. Dr. Murat AKSOY from Liv Hospital, Istanbul, for his sharing of patient photographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Karaöz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Şener, L.T., Darici, H., Albeniz, I., Karaöz, E. (2017). Wound Treatment by Stem Cells. In: Pham, P. (eds) Pancreas, Kidney and Skin Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-55687-1_10

Download citation

Publish with us

Policies and ethics