Skip to main content

Diamond in the Lower Mantle

  • Chapter
  • First Online:
The Earth's Lower Mantle

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 1282 Accesses

Abstract

Diamond contains mineral inclusions of all three lower-mantle associations, juvenile ultramafic, mafic and carbonatitic; it is also an accessory mineral in all these associations. While the first two associations coexist with diamond, the carbonatitic association is a parental medium for the lower-mantle diamond. Physical and chemical characteristics of lower-mantle diamond differ from ones of lithospheric origin. Most of the lower-mantle diamonds are ‘nitrogen -free’ Type II variety. The others are usually low-nitrogen stones with the average nitrogen aggregation rate of 94%. The high proportion of nitrogen-aggregated diamonds suggests that they had a prolonged residence in the lower mantle under high-T conditions, which resulted in an almost complete transformation of single-atomic and paired nitrogen centers into polyatomic complexes. In contrast to lithospheric diamonds, almost all analyzed lower-mantle ones (70–89%) have noticeable levels of hydrogen centers (up to 4–6 cm−1). The isotopic compositions of lower-mantle diamonds are located within a narrow range: from −5.45 to −1.26‰ δ 13C VPDB, with an average value of −4.36‰ ± 2.28‰ (2σ). It may be considered as the juvenile lower-mantle carbon isotopic composition. The isotopic composition of nitrogen for lower-mantle diamonds is located within a close range, from −5.2 to −1.0‰ δ 15Natm, with an average value of δ 15Natm = −3.00‰ ± 2.37‰ δ 15Natm. Lower-mantle diamond was formed in carbonate-oxide parental melts and fluids, which experienced fractional crystallization with the decrease of temperature and changes in the melt composition. The most important role in this process belongs to the carbonate component in the parental melt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arajuo, D. P., Gaspar, J. C., & Bulanova, G. P. (2013). Juina diamonds from kimberlites and alluvials: A comparison of morphology, spectral characteristics and carbon isotope composition. In Proceedings of the 10th International Kimberlite Conference (Vol. 1) (Special Issue of the Journal of the Geological Society of India, Vol. 1, pp. 255–269).

    Google Scholar 

  • Bartoshinsky, Z. V. (1962). Crystallomorphology of Yakutian diamonds. Ph.D. thesis, Lvov University. Lvov, 17 pp. (in Russian).

    Google Scholar 

  • Beha, K., Batalov, A., Manson, N. B., Bratschitsch, R., & Leitenstorfer, A. (2012). Optimum photoluminescence excitation and recharging cycle of single nitrogen-vacancy centers in ultrapure diamond. Physical Review Letters, 109, 097404. doi:10.1103/PhysRevLett.109.097404

    Article  Google Scholar 

  • Boyd, S. R., Kiflawi, I., & Woods, G. S. (1994). The relationship between infrared absorption and A-defect concentration in diamond. Philosophical Magazine B, 69(6), 1149–1153.

    Article  Google Scholar 

  • Boyd, S. R., Kiflawi, I., & Woods, G. S. (1995). Infrared absorption by the B nitrogen aggregate in diamond. Philosophical Magazine B, 72(3), 351–361.

    Article  Google Scholar 

  • Boyd, S. R., Mattey, D. P., Pillinger, C. T., Milledge, H. J., Mendelssohn, M., & Seal, M. (1987). Multiple growth events during diamond genesis: An integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones. Earth and Planetary Science Letters, 86(2–4), 341–353.

    Article  Google Scholar 

  • Boyd, S. R., & Pillinger, C. T. (1994). A preliminary study of 15N/14N in octahedral growth form diamonds. Chemical Geology, 116, 43–59.

    Article  Google Scholar 

  • Boyd, S. R., Pillinger, C. T., Milledge, H. J., Mendelssohn, M. J., & Seal, S. M. (1992). C and N isotopic composition and the infrared absorption spectra of coated diamonds: Evidence for the regional uniformity of CO2–H2O rich fluids in lithospheric mantle. Earth and Planetary Science Letters, 109, 633–644.

    Article  Google Scholar 

  • Bulanova, G. P., Smith, C. B., Kohn, S. C., Walter, M. J., Gobbo, L., & Kearns, S. (2008). Machado River, Brazil—A newly recognised ultradeep diamond occurrence. In: 9th International Kimberlite Conference Extended Abstract No. 9IKC-A-00233.

    Google Scholar 

  • Bulanova, G. P., Walter, M. J., Smith, C. B., Kohn, S. C., Armstrong, L. S., Blundy, J., et al. (2010). Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions to Mineralogy and Petrology, 159(4), 489–510. doi:10.1007/s00410-010-0490-6

    Article  Google Scholar 

  • Bundy, F. P., & Kasper, J. S. (1967). Hexagonal diamond—A new form of carbon. The Journal of Chemical Physics, 46, 3437.

    Article  Google Scholar 

  • Bureau, H., Frost, D. J., Bolfan-Casanova, N., Leroy, C., Esteve, I., & Cordier, P. (2016). Diamond growth in mantle fluids. Lithos, 265, 4–15. doi:10.1016/j.lithos.2016.10.004

    Article  Google Scholar 

  • Burnham, A. D., Bulanova, G. P., Smith, C. B., Whitehead, S. C., Kohn, S. C., Gobbo, L., et al. (2016). Diamonds from the Machado River alluvial deposit, Rondônia, Brazil, derived from both lithospheric and sublithospheric mantle. Lithos, 265, 199–213. doi:10.1016/j.lithos.2016.05.022

    Article  Google Scholar 

  • Bursill, L. A., & Glaisher, R. W. (1985). Aggregation and dissolution of small and extended defect structures in type Ia diamond. American Mineralogist, 70, 608–618.

    Google Scholar 

  • Cartigny, P. (2005). Stable isotopes and the origin of diamond. Elements, 1(2), 79–84.

    Article  Google Scholar 

  • Cartigny, P., Boyd, S. R., Harris, J. W., & Javoy, M. (1997). Nitrogen isotopes in peridotite diamonds from Fuxian, China: The mantle signature. Terra Nova, 9, 175–179.

    Article  Google Scholar 

  • Cartigny, P., Chinn, I., Viljoen, K. S., & Robinson, D. (2004a). Early Proterozoic (>1.8 Ga) ultrahigh pressure metamorphism: Evidence from Akluilak microdiamonds. Science, 304, 853–855.

    Article  Google Scholar 

  • Cartigny, P., De Corte, K., Shatsky, V. S., Ader, M., De Paepe, P., Sobolev, N. V., et al. (2001). The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan: A nitrogen and carbon isotopic study. Chemical Geology, 176(1–4), 265–281.

    Article  Google Scholar 

  • Cartigny, P., Farquar, J., Thomassot, E., Harris, J. W., Wing, B., Masterson, A., et al. (2009). A mantle origin for Paleoarchean peridotite diamonds from the Panda kimberlite, Slave Province: Evidence from 13C, 15N and 33–34S stable isotope systematics. Lithos, 112S, 852–864.

    Article  Google Scholar 

  • Cartigny, P., Harris, J. W., & Javoy, M. (1998). Eclogitic diamond formation of Jwaneng: No room for a recycled component. Science, 280(5368), 1421–1424.

    Article  Google Scholar 

  • Cartigny, P., Harris, J. W., & Javoy, M. (1999). Eclogitic, peridotitic and metamorphic diamonds and the problems of carbon recycling—The case of Orapa (Botswana). In Proceedings of the VIIth International Kimberlite Conference (Vol. 1, pp. 117–124). Cape Town: Red Roof Design.

    Google Scholar 

  • Cartigny, P., Harris, J. V., Taylor, A., Davies, R., & Javoy, M. (2003). On the possibility of a kinetic fractionation of nitrogen stable isotopes during natural diamond growth. Geochimica et Cosmochimica Acta, 67(6), 1571–1576.

    Article  Google Scholar 

  • Cartigny, P., Stachel, T., Harris, J. W., & Javoy, M. (2004b). Constraining diamond metasomatic growth using C- and N-stable isotopes: Examples from Namibia. Lithos, 77, 359–373.

    Article  Google Scholar 

  • Cayzer, N. J., Odake, S., Harte, B., & Kagi, H. (2008). Plastic deformation of lower mantle diamonds by inclusion phase transformations. European Journal of Mineralogy, 20(3), 333–339.

    Article  Google Scholar 

  • Chrenko, R. M., McDonald, R. S., & Darrow, K. A. (1967). Infra-red spectra of diamond coat. Nature, 213(5075), 474–476.

    Article  Google Scholar 

  • Clark, C. D., Collins, A. T., & Woods, G. S. (1992). Absorption and luminescence spectroscopy. In J. E. Field (Ed.), The properties of natural and synthetic diamonds (pp. 35–80). London: Academic Press.

    Google Scholar 

  • Collins, A. T., Thomaz, M. F., & Jorge, M. I. B. (1983). Luminescence decay time of the 1.945 eV centre in type Ib diamond. Journal of Physics C: Solid State Physics, 16, 2177.

    Article  Google Scholar 

  • Correa, A. A., Bonev, S. A., & Galli, G. (2006). Carbon under extreme conditions: Phase boundaries and electronic properties from first-principles theory. In Proceedings of the National Academy of the U.S.A. (Vol. 103(5), pp. 1204–1208). doi:10.1073/pnas.0510489103

  • Davies, G. (1976). The A nitrogen aggregate in diamond: Its symmetry and possible structure. Journal of Physics C: Solid State Physics, C9, L537–L542.

    Article  Google Scholar 

  • Davies, G. (1977). The optical properties of diamond. In P. L. Walker & P. A. Thrower (Eds.), Chemistry and physics of carbon (Vol. 13, pp. 2–143). New York: Marcel Dekker.

    Google Scholar 

  • Davies, R. M., Griffin, W. L., O’Reilly, S. Y., & Doyle, B. J. (2004). Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos, 77(1–4), 39–55.

    Article  Google Scholar 

  • DeCarli, P. S., Bowden, E., Jones, A. P., & Price, G. D. (2002). Laboratory impact experiments versus natural impact events. GSA Special Paper, 356, 595–605.

    Google Scholar 

  • Deines, P., Gurney, J. J., & Harris, J. W. (1984). Accociated chemical and carbon isotopic composition variations in diamonds from Finsch and Premier kimberlite, South Africa. Geochimica et Cosmochimica Acta, 48(2), 325–342.

    Article  Google Scholar 

  • Deines, P., Harris, J. W., & Gurney, J. J. (1991). The carbon isotopic composition and nitrogen content of lithospheric and astenospheric diamonds from the Jagersfontein and Koffifontein kimberlite, South Africa. Geochimica et Cosmochimica Acta, 55(5), 2615–2625.

    Article  Google Scholar 

  • Deines, P., Harris, J. W., & Gurney, J. J. (1993). Depth-related carbon isotope and nitrogen concentration variability in the mantle below the Orapa kimberlite, Botswana, Africa. Geochimica et Cosmochimica Acta, 57, 2781–2796.

    Article  Google Scholar 

  • DeVries, R. C. (1975). Plastic deformation and “work-hardening” of diamond. Materials Research Bulletin, 10, 1193–1200.

    Google Scholar 

  • Dobrinets, A., Vins, V.G., & Zaitsev, A.M. (2013). HPHT-Treated Diamonds. Berlin: Springer, Heidelberg, p. 257.  

    Google Scholar 

  • Dubinchuk, V. T., Simakov, S. K., & Pechnikov, V. A. (2010). Lonsdaleite in diamond bearing metamorphic rocks of the Kokchetav massif. Doklady Earth Sciences, 430(1), 40–42.

    Article  Google Scholar 

  • Evans, T. (1992). Aggregation of nitrogen in diamond. In J. Field (Ed.), The properties of natural and synthetic diamond (pp. 259–290). London: Academic Press.

    Google Scholar 

  • Evans, T., & Phaal, C. (1962). Imperfections in Type I and Type II diamonds. In Proceedings of Royal Society A270 (pp. 538–552).

    Google Scholar 

  • Fritsch, E., Hainschwang, T., Massi, L., & Rondeau, B. (2007). Hydrogen-related optical centers in natural diamond: An update. New Diamond and Frontier Carbon Technology, 17(2), 63–89.

    Google Scholar 

  • Frondel, C., & Marvin, U. B. (1967). Lonsdaleite, a hexagonal polymorph of diamond. Nature, 214, 587–589.

    Article  Google Scholar 

  • Galimov, E. M. (1985). The relation between formation conditions and variations in isotope composition of diamonds. Geochemistry International, 22(1), 118–142.

    Google Scholar 

  • Galimov, E. M., Zakharchenko, O. D., Maltsev, K. A., Makhin, A. I., & Pavlenko, T. A. (1994). The isotopic composition of carbon in diamonds from kimberlitic pipes of the Arkhangelsk district. Geochemistry, 1, 67–73.

    Google Scholar 

  • Godard, G., Frezzotti, M. L., Palmeri, R., & Smith, D. C. (2012). Origin of high-pressure disordered metastable phases (lonsdaleite and incipiently amorphized quartz) in metamorphic rocks: Geodynamic shock or crystal-scale overpressure? In L. F. Dobrzhinetskaya, S. W. Faryad, S. Wallis, & S. Cuthbert (Eds.), Ultrahigh pressure metamorphism: 25 years after the discovery of coesite and diamond (pp. 125–148). London: Elsevier.

    Google Scholar 

  • Gorshkov, A. I., Yanan, B., Bershov, L. V., Ryabchikov, I. D., Sivtsov, A. V., & Lapina, M. I. (1997). Inclusions in diamond from the Liaoning deposit (China) and their genetic meaning. Geochemistry International, 35(1), 58–65.

    Google Scholar 

  • Goss, J. P., Briddon, P. R., Hill, V., Jones, R., & Rayson, M. J. (2014). Identification of the structure of the 3107 cm−1 H-related defect in diamond. Journal of Physics. Condensed Matter, 26(14), 145801.

    Article  Google Scholar 

  • Goss, J. P., Coomer, B. J., Jones, R., Fall, C. J., Briddon, P. R., & Öberg, S. (2003). Extended defects in diamond: The interstitial platelet. Physical Review B, 67, 165208.

    Article  Google Scholar 

  • Griffin, W. L., Win, T. T., Davies, R., Wathanakul, P., Andrew, A., Metcalfe, I., et al. (2001). Diamonds from Myanmar and Thailand: Characteristics and possible origins. Economic Geology, 96(1), 159–170.

    Google Scholar 

  • Hanzawa, H., Nisida, Y., & Kato, T. (1997). Measurement of decay time for the NV centre in Ib diamond with a picosecond laser pulse. Diamond and Related Materials, 6(11), 1595–1598.

    Article  Google Scholar 

  • Harte, B., Harris, J. W., Hutchison, M. T., Watt, G. R., & Wilding, M. C. (1999). Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In Y. Fei, C. M. Bertka, & B. O. Mysen (Eds.), Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R. (Joe) Boyd (No. 6, pp. 125–153). Geochemical Society Special Publication.

    Google Scholar 

  • Harte, B., Taniguchi, T., & Chakraborty, S. (2009). Diffusion in diamond. II. High-pressure-temperature experiments. Mineralogical Magazine, 73(2), 201–204. doi:10.1180/minmag.2009.073.2.201

  • Hayman, P. C., Kopylova, M. G., & Kaminsky, F. V. (2005). Lower mantle diamonds from Rio Soriso (Juina, Brazil). Contributions to Mineralogy and Petrology, 149(4), 430–445.

    Article  Google Scholar 

  • Hazen, R. M., Downs, R. T., Jones, A. P., & Kah, L. (2013). Carbon mineralogy and crystal chemistry. Rev Mineral Geochem, 75, 7–46.

    Article  Google Scholar 

  • Hutchison, M. T., Cartigny, P., & Harris, J. W. (1999). Carbon and nitrogen compositions and physical characteristics of transition zone and lower mantle diamonds from São Luiz, Brazil. In J. J. Gurney, J. L. Gurney, M. D. Pascoe, & S. H. Richardson (Eds.), Proceedings of the VIIth International Kimberlite Conference (Vol. 1, pp. 372–382). Cape Town: Red Roof Design.

    Google Scholar 

  • Inam, F. A., Grogan, M. D. W., Rollings, M., Gaebel, T., Say, J. M., Bradac, C., et al. (2013). Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment. ACS Nano, 7(5), 3833–3843.

    Article  Google Scholar 

  • Ivanov, B. A., & Deutsch, A. (2002). The phase diagram of CaCO3 in relation to shock compression and decompression. Physics of the Earth and Planetary Interiors, 129, 131–143.

    Article  Google Scholar 

  • Javoy, M., Pineau, F., & Demaiffe, D. (1984). Nitrogen and carbon isotopic composition in the diamonds of Mbuji Mayi (Zaire). Earth and Planetary Science Letters, 68(3), 399–412.

    Article  Google Scholar 

  • Jones, J., & Goss, J. P. (2002). Theory of aggregation of nitrogen in diamond. EMIS Datareviews Series, 26, 127–129.

    Google Scholar 

  • Jones, J. P., McMillan, P. F., Salzmann, C. G., Alvaro, M., Nestola, F., Prencipe, M., et al. (2016). Structural characterization of natural diamond shocked to 60 GPa; implications for earth and planetary systems. Lithos, 265, 214–221. doi:10.1016/j.lithos.2016.09.023

    Article  Google Scholar 

  • Kaiser, W., & Bond, W. L. (1959). Nitrogen, a major impurity in common type I diamond. Physical Review, 115(4), 857–863.

    Article  Google Scholar 

  • Kaminsky, F. V. (1994). Carbonado and Yakutite: Properties and possible genesis. In H. O. A. Meyer & O. H. Leonardos (Eds.), Proceedings of the Fifth International Kimberlite Conference: Vol. 2. Diamonds: Characterization, Genesis and Exploration (pp. 136–143). Brazil.

    Google Scholar 

  • Kaminsky, F. V., & Khachatryan, G. K. (2001). Characteristics of nitrogen and other impurities in diamond, as revealed by infrared absorption data. Canadian Mineralogist, 39(6), 1733–1745.

    Article  Google Scholar 

  • Kaminsky, F. V., Khachatryan, G. K., Andreazza, P., Araujo, D., & Griffin, W. L. (2009). Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos, 112S(2), 833–842.

    Article  Google Scholar 

  • Kaminsky, F. V., Wirth, R., & Schreiber, A. (2013). Carbonatitic inclusions in Deep Mantle diamond from Juina, Brazil: New minerals in the carbonate-halide association. Canadian Mineralogist, 51(5), 669–688. doi:10.3749/canmin.51.5.669

    Article  Google Scholar 

  • Kaminsky, F. V., Wirth, R., & Schreiber, A. (2015). A microinclusion of lower-mantle rock and some other lower-mantle inclusions in diamond. Canadian Mineralogist, 53(1), 83–104. doi:10.3749/canmin.1400070

    Article  Google Scholar 

  • Kaminsky, F. V., Zakharchenko, O. D., Davies, R., Griffin, W. L., Khachatryan-Blinova, G. K., & Shiryaev, A. A. (2001). Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contributions to Mineralogy and Petrology, 140(6), 734–753.

    Article  Google Scholar 

  • Kiflawi, I., Bruley, J., Luyten, W., & Van Tendeloo, G. (1998). ‘Natural’ and ‘man-made’ platelets in type-Ia diamonds. Philosophical Magazine Part B, 78(3), 299–314. doi:10.1080/014186398258104

  • Kiflawi, I., Mayer, A. E., Spear, P. M., Van Wyk, J. A., & Woods, G. S. (1994). Infrared-absorption by the single nitrogen and A defect centres in diamond. Philosophical Magazine Part B, 69, 1141–1147.

    Article  Google Scholar 

  • Klein-BenDavid, O., Pearson, D. G., Nowell, G. M., Ottley, C., McNeill, J. C. R., & Cartigny, P. (2010). Mixed fluid sources involved in diamond growth constrained by Sr–Nd–Pb–C–N isotopes and trace elements. Earth and Planetary Science Letters, 289(1/2), 123–133.

    Article  Google Scholar 

  • Kohn, S. C., Speich, L., Smith, C. B., & Bulanova, G. P. (2016). FTIR thermochronometry of natural diamonds: A closer look. Lithos, 265, 148–158. doi:10.1016/j.lithos.2016.09.021

    Article  Google Scholar 

  • Kukharenko, A. A. (1955). Diamonds of the Urals (515 pp.). Moscow: Geoltekhizdat Publishing House. (in Russian).

    Google Scholar 

  • Kurdyumov, A. V., Britun, V. F., Yarosh, V. V., & Danlienko, A. I. (2012). The influence of shock compression on the graphite transformations into lonsdaleite and diamond. Journal of Superhard Materials, 34, 19–27.

    Article  Google Scholar 

  • Liaugaudas, G., Davies, G., Suhling, K., Khan, R. U., & Evans, D. J. (2012). Luminescence lifetimes of neutral nitrogen-vacancy centres in synthetic diamond containing nitrogen. Journal of Physics: Condensed Matter, 24(43), 435503–435507.

    Google Scholar 

  • Litvin, Y. A., Spivak, A. V., & Kuzyura, A. V. (2016). Fundamentals of the mantle carbonatite concept of diamond genesis. Geochemistry International, 54(10), 839–857. doi:10.1134/S0016702916100086

    Article  Google Scholar 

  • Litvin, Y., Spivak, A., Solopova, N., & Dubrovinsky, L. (2014). On origin of lower-mantle diamonds and their primary inclusions. Physics of the Earth and Planetary Interiors, 228, 176–185. doi:10.1016/j.pepi.2013.12.007

    Article  Google Scholar 

  • Litvin, Y. A., Vasiliev, P. G., Bobrov, A. V., Okoemova, V Yu., & Kuzyura, A. V. (2012). Parental media of natural diamonds and primary mineral inclusions in them: Evidence from physicochemical experiment. Geochemistry International, 50(9), 726–759.

    Article  Google Scholar 

  • Liu, X., Jia, X., Fang, C., & Ma, H.-A. (2016). Diamond crystallization and growth in N–H enriched environment under HPHT conditions. CrystEngComm, 18, 8506. doi:10.1039/c6ce02034h

    Article  Google Scholar 

  • Lonsdale, K. (1971). Formation of lonsdaleite from single-crystal graphite. American Mineralogist, 56, 333–336.

    Google Scholar 

  • Martynovich, E. F., Mironov, V. P., Rakevich, A. L., Stepanov, F. A., Emel’yanova, A. S., Shatskii, V. S., et al. (2013). Spectral-temporal luminescence microscopy of superdeep diamonds of the Juina province. Izv. Vuzov. Fizika, 56(2/2), 227–232 (in Russian, English abstract).

    Google Scholar 

  • Massaitis, V. L. (2013). Impact diamonds of the Popigai astrobleme: Main properties and practical use. Geology of Ore Deposits, 55(8), 607–612.

    Article  Google Scholar 

  • Massaitis, V. L., Futergendler, S. I., & Gnevushev, M. A. (1972). Diamonds in Popigai meteorite crater impactites. Zapisky Vsesoyuznogo Mineralogicheskogo Obshchestva, 102(1), 108–112. (in Russian).

    Google Scholar 

  • Mendelssohn, M. (1971). The etching of diamond and of the associated minerals garnet and olivine. Ph.D. thesis, University of London.

    Google Scholar 

  • Mendelssohn, M. J., & Milledge, H. J. (1995). Geologically significant information from routine analysis of the mid-infrared spectra of diamonds. International Geological Review, 37, 95–110.

    Article  Google Scholar 

  • Mironov, V. P., Rakevich, A. L., Stepanov, F. A., Emel’yanova, A. S., Zedgenizov, D. A., Shatsky, V. S., et al. (2015). Luminescence in diamonds of the São Luiz placer (Brazil). Russian Geology and Geophysics, 56, 729–736.

    Google Scholar 

  • Nakamuta, Y., & Toh, S. (2013). Transformation of graphite to lonsdaleite and diamond in the Goalpara ureilite directly observed by TEM. American Mineralogist, 98, 574–581.

    Article  Google Scholar 

  •   Navon, O., Wirth, R., Schmidt, C., Jablon, B. M., Schreiber, A., & Emmanuel, S. (2017). Solid molecular nitrogen (δ-N2) inclusions in Juina diamonds: Exsolution at the base of the transition zone. Earth and Planetary Science Letters, 464, 237–247. doi:10.1016/j.epsl.2017.01.035.

  • Nemeth, P., Garvie, L. A. J., Aoki, T., Dubrovinskaia, N., Dubrovinsky, L., & Buseck, P. R. (2014). Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nature Communications, 5, 5447. doi:10.1038/ncomms6447

  • Oganov, A. R., Hemley, R. J., Hazen, R. M., & Jones, A. P. (2013). Structure, bonding, and mineralogy of carbon at extreme conditions. Reviews in Mineralogy and Geochemistry, 75, 47–77. doi:10.2138/rmg.2013.75.3

    Article  Google Scholar 

  • Ohfuji, H., Irifune, T., Litasov, K. D., Yamashita, T., Isobe, F., Afanasiev, V. P., et al. (2015). Natural occurrence of pure nanopolycrystalline diamond from impact crater. Scientific Reports, 5, 14702. doi:10.1038/srep14702

    Article  Google Scholar 

  • Orlov, Yu L. (1987). Mineralogy of diamonds (p. 235). NY: Wiley.

    Google Scholar 

  • Palot, M. P., Cartigny, P., Harris, J. W., Kaminsky, F. V., & Stachel, T. (2012). Evidence for deep mantle convection and primordial heterogeneity from N and C stable isotopes in diamond. Earth and Planetary Science Letters, 357–358, 179–193.

    Article  Google Scholar 

  • Palot, M., Cartigny, P., & Viljoen, F. (2009). Diamond origin and genesis: A C and N stable isotope study on diamonds from a single eclogitic xenolith (Kaalvallei, South Africa). Lithos, 112S, 758–766.

    Article  Google Scholar 

  • Palyanov, Y. N., Kupriyanov, I. N., Sokol, A. G., Borzdov, Y. M., & Khokhryakov, A. F. (2016). Effect of CO2 on crystallization and properties of diamond from ultra-alkaline carbonate melt. Lithos, 265, 339–350. doi:10.1016/j.lithos.2016.05.021

    Article  Google Scholar 

  • Pinti, D. L., Ishida, A., Takahata, N., Sano, Y., Bureau, H., & Cartigny, P. (2016). Micron-scale δ13C determination by NanoSIMS in a Juina diamond with a carbonate inclusion. Geochemical Journal, 50(4), e7–e12. doi:10.2343/geochemj.2.0427

    Article  Google Scholar 

  • Pratesi, G., Lo Giudice, A., Vishnevsky, S., Manfredotti, C., & Cipriani, C. (2003). Cathodoluminoscence investigation of the Popigai, Ries, and Lappajarvi impact diamonds. American Mineralogist, 88, 1778–1787.

    Article  Google Scholar 

  • Robertson, R., Fox, J. J., & Martin, A. E. (1934). Two types of diamond. Philosophical Transactions of the Royal Society (London), A263, 463–535.

    Article  Google Scholar 

  • Robinson, D. N. (1980). Surface textures and other features of diamonds. Ph.D. thesis (unpublished). University of Cape Town, Rondebosch, South Africa, 221 pp.

    Google Scholar 

  • Robinson, D. N., Scott, J. A., Van Nierkerk, A., & Anderson, V. G. (1989). The sequence of events reflected in the diamonds of some southern African kimberlites. In J. Ross (Ed.), Kimberlites and Related Rocks: Vol. 2. Their mantle/crust setting (Vol. 14, pp. 990–1000). Special Publication Geological Society of Australia.

    Google Scholar 

  • Rondeau, B., Fritsch, E., Guiraud, M., Chalain, J. P., & Notari, F. (2004). The historical ‘asteriated’ hydrogen-rich diamonds: Growth history and sector-dependence impurity incorporation. Diamond and Related Materials, 13(9), 1658–1673. doi:10.1016/j.diamond.2004.02.002

    Article  Google Scholar 

  • Ross, A., Steele, A., Fries, M. D., Kater, L., Downes, H., Jones, A. P., et al. (2011). MicroRaman spectroscopy of diamond and graphite in Almahata Sitta and comparison with other ureilites. Meteoritics & Planetary Science, 46, 364–378.

    Article  Google Scholar 

  • Ryabchikov, I. D., & Kogarko, L. N. (2016). Physicochemical parameters of deep-seated mantle plumes. Russian Geology and Geophysics, 57(5), 687–697. doi:10.1016/j.rgg.2015.09.013

    Article  Google Scholar 

  • Shumilova, T. G., Mayer, E., & Isaenko, S. I. (2011). Natural monocrystalline lonsdaelite. Doklady Earth Sciences, 441, 1552–1554.

    Article  Google Scholar 

  • Sobolev, E. V. (1978). Nitrogen centers and crystal growth of natural diamond. In V. S. Sobolev (Ed.), Problems of lithosphere and upper mantle petrology (pp. 245–255). Novosibirsk: Nauka Press (in Russian).

    Google Scholar 

  • Sobolev, N. V., Galimov, E. M., Ivanovskaya, I. N., & Yefimova, E. S. (1979). Carbon isotopic composition of diamonds containing crystalline inclusions. Doklady Akademii Nauk SSSR, 249(5), 1217–1220. (in Russian).

    Google Scholar 

  • Sowa, H., & Koch, E. (2001). A proposal for a transition mechanism from the diamond to lonsdaleite type. Acta Crystallographica, A57, 406–413.

    Article  Google Scholar 

  • Spivak, A. V. (2015). Genesis of super-deep diamond and its primary inclusions in the Earth’s lower mantle (experimental study). D.Sc. thesis, Lomonosov Moscow State University, Moscow, 216 pp. (in Russian).

    Google Scholar 

  • Stachel, T., & Harris, J. W. (1997). Syngenetic inclusions in diamonds from the Birim field (Ghana)—A deep peridotitic profile with a history of depletion and re-enrichment. Contributions to Mineralogy and Petrology, 127, 336–352.

    Article  Google Scholar 

  • Stachel, T., Harris, J. W., Aulbach, S., & Deines, P. (2002). Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds. Contributions to Mineralogy and Petrology, 142(4), 465–475.

    Article  Google Scholar 

  • Stepanov, F. A., Mironov, V. P., Rakevich, A. L., Shatsky, V. S., Zedgenizov, D. A., & Martynovicha, E. F. (2016). Red luminescence decay kinetics in Brazilian diamonds. Bulletin of the Russian Academy of Sciences. Physics, 80(1), 74–77.

    Article  Google Scholar 

  • Taylor, W. R., Canil, D., & Milledge, H. J. (1996). Kinetics of Ib to IaA nitrogen aggregation in diamonds. Geochimica et Comsmochimica Acta, 60(23), 4725–4733.

    Article  Google Scholar 

  • Taylor, W. R., Jaques, A. L., & Ridd, M. (1990). Nitorgen-defect aggregation characteristics of some Australasian diamonds: Time-temperature constraints on the source regions of pipe and alluvial diamonds. American Mineralogist, 75, 1290–1310.

    Google Scholar 

  • Taylor, W. R., & Milledge, H. J. (1995). Nitrogen aggregation character, thermal history and stable isotope composition of some xenolith-derived diamonds from Roberts Victor and Finch. In Sixth International Kimberlite Conference on Extended Abstract, Novosibirsk, August 1995 (pp. 620–622).

    Google Scholar 

  • Thomassot, E., Cartigny, P., Harris, J. W., Lorand, J. P., Rollion-Bard, C., & Chaussidon, M. (2009). Metasomatic diamond growth: A multi-isotope study (13C, 15N, 33S, 34S) of sulphide inclusions and their host diamonds from Jwaneng (Botswana). Earth and Planetary Science Letters, 282, 79–90.

    Article  Google Scholar 

  • Tolansky, S. (1955). The microstructures of diamond surfaces (p. 67). London: N.A.G. Press.

    Google Scholar 

  • Tschauner, O., Mao, H., & Hemley, R. J. (2001). New transformations of CO2 at high pressures and temperatures. Physical Review Letters, 87(7), 075701–075704.

    Article  Google Scholar 

  • Valter, A. A., Eryomenko, G. K., Kvasnitsa, V. N., & Polkanov, Y. A. (1992). Shock-metamorphic minerals of carbon (172 p). Kiev: Naukova Dumka (in Russian).

    Google Scholar 

  • Van Heerden, L. A., Boyd, S. R., Milledge, H. J., & Pillinger, C. T. (1995). The carbon and nitrogen-isotope characteristics of the Argyle and Ellendale diamonds, Western Australia. International Geology Review, 37, 39–50.

    Article  Google Scholar 

  • Vins, V. V., & Pestryakov, E. V. (2006). Color centers in diamond crystals: Their potential use in tunable and femtosecond lasers. Diamond and Related Materials, 15(4–8), 569–571. doi:10.1016/j.diamond.2005.11.038

    Article  Google Scholar 

  • Woods, G. S., & Collins, A. T. (1983). Infrared absorption spectra of hydrogen complexes in type I diamonds. Journal of Physics and Chemistry of Solids, 44(5), 471–475. doi:10.1016/0022-3697(83)90078-1.

  • Yelisseyev, A. P., Pokhilenko, N. P., Steeds, J. W., Zedgenizov, D. A., & Afanasiev, V. P. (2004). Features of coated diamonds from the Snap Lake/King Lake kimberlite dyke, Slave craton, Canada, as revealed by optical topography. Lithos, 77, 83–97.

    Article  Google Scholar 

  • Yuryeva, O. P., Rakhmanova, M. I., Nadolinny, V. A., Zedgenizov, D. A., Shatsky, V. S., Kagi, H., et al. (2015). The characteristic photoluminescence and EPR features of superdeep diamonds (São-Luis, Brazil). Physics and Chemistry of Minerals, 42, 707–722. doi:10.1007/s00269-015-0756-7

    Article  Google Scholar 

  • Zaitsev, A. (2001). Optical properties of diamonds (p. 502). Berlin: Springer.

    Book  Google Scholar 

  • Zedgenizov, D. A., Kagi, H., Shatsky, V. S., & Ragozin, A. L. (2014). Local variations of carbon isotope composition in diamonds from Sao-Luis (Brazil): Evidence for heterogenous carbon reservoir in sublithospheric mantle. Chemical Geology, 240(1–2), 114–124.

    Article  Google Scholar 

  • Zedgenizov, D. A., Shatsky, V. S., Panin, A. V., Evtushenko, O. V., Ragozin, A. L., & Kagi, H. (2015). Evidence for phase transitions in mineral inclusions in superdeep diamonds of the Sao Luiz deposit, Brazil. Russian Geology and Geophysics, 56(1), 296–305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix V. Kaminsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kaminsky, F.V. (2017). Diamond in the Lower Mantle. In: The Earth's Lower Mantle. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-55684-0_7

Download citation

Publish with us

Policies and ethics