Skip to main content

Seismic Heterogeneities and Their Nature in the Lower Mantle

  • Chapter
  • First Online:
Book cover The Earth's Lower Mantle

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Over the last 20 years, global seismology has made significant progress in mapping the deep interior of the Earth. Tomographic studies identified variations in lower-mantle chemistry and phase transitions with depths of observed seismic heterogeneities occupying the entire range of the lower mantle. Three major zones of seismic heterogeneities can be outlined. The upper (shallow) zone from 660–1300 km includes ~70% of all heterogeneities, observed almost equally near subduction zones and beneath the tectonic plates. The middle zone, from 1300 to 1900 km, includes ~20% of all heterogeneities, which are observed entirely near subduction zones. The lower zone, from 1900 km to the border of D″ layer at 2700 km includes only a small number of heterogeneities. The deepest seismic heterogeneities, identified within the central parts of the Eurasian and North American plates, are located at depths of ~2630 km and ~2400 km. No correlation between the observed seismic heterogeneities and major mineral phase transitions and spin crossover were identified. The seismic heterogeneities, most likely, reflect local and regional chemical variations within the lower mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becker, T. W., Kellog, J. B., & O’Connell, R. J. (1999). Thermal constraints on the survival of primitive blobs in the lower mantle. Earth and Planetary Science Letters, 171, 351–365.

    Google Scholar 

  • Bina, C. R. (1998). Lower mantle mineralogy and the geophysical perspective. Reviews in Mineralogy, 37, 205–239.

    Google Scholar 

  • Cao, A., & Romanowicz, B. (2007). Locating scatterers in the mantle using array analysis of PKP precursors from an earthquake doublet. Earth and Planetary Science Letters, 255, 22–31. doi:10.1016/j.epsl.2006.12.002

  • Castle, J. C., & Creager, K. C. (1999). A steeply dipping discontinuity in the lower mantle beneath Izu-Bonin. Journal of Geophysical Research, 104(B4), 7279–7292.

    Google Scholar 

  • Castle, J. C., & van der Hilst, R. D. (2003). Searching for seismic scattering off mantle interfaces between 800 km and 2000 km depth. Journal of Geophysical Research, 108(B2), 2095. doi:10.1029/2001JB000286

  • Courtier, A. M., & Revenaugh, J. (2008). Slabs and shear wave reflectors in the midmantle. Journal of Geophysical Research, 113, B08312. doi:10.1029/2007JB005261

  • Dai, L., Kudo, Y., Hirose, K., Murakami, M., Asahara, Y., Ozawa, H., et al. (2013). Sound velocities of Na0.4Mg0.6Al1.6Si0.4O4 NAL and CF phases to 73 GPa determined by Brillouin scattering method. Physics and Chemistry of Minerals, 40, 195–201.

    Google Scholar 

  • Davies, G. F. (1984). Geophysical and isotopic constraints on mantle convection: An interim synthesis. Journal of Geophysical Research. Solid Earth 89, 6017–6040. doi:10.1029/JB089iB07p06017

  • Deuss, A., Andrews, & J., Day, E. (2013). Seismic observations of mantle discontinuities and their mineralogical and dynamical interpretation. In: S.-I. Karato, (Ed.), Physics and Chemistry of Deep Earth. (pp.287–323). USA: Wiley.

    Google Scholar 

  • Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.

    Google Scholar 

  • Girard, J., Amulele, G., Farla, R., Mohiuddin, A., & Karato, S.-I. (2016). Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science, 351(6269), 144–147. doi:10.1126/science.aad3113

  • Gurnis, M., & Davies, G. F. (1986). Mixing in numerical-models of mantle convection incorporating plate kinematics, mixing in the mantle and the possible survival of primitive mantle. Journal of Geophysical Research, 91, 6375–6395.

    Google Scholar 

  • Helffrich, G. R., & Wood, B. J. (2001). The Earth’s mantle. Nature, 412(6846), 501–507.

    Google Scholar 

  • Jenkins, J., Deuss, A., & Cottaar, S. (2017). Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe. Earth and Planetary Science Letters, 459, 196–207. doi:10.1016/j.epsl.2016.11.031

  • Johnson, L. R. (1969). Array measurements of P velocities in the lower mantle. Bulletin of the Seismological Society of America, 59(2), 973–1008.

    Google Scholar 

  • Kaminsky, F. V. (2012). Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth-Science Reviews, 110(1–4), 127–147.

    Google Scholar 

  • Kaminsky, F. V., & Lin, J.-F. (2017). Iron partitioning in natural lower-mantle minerals: Toward a chemically heterogeneous lower mantle. American Mineralogist, 102(4), 824–832. doi:10.2138/am-2017-5949.

  • Kaminsky, F. V., Wirth, R., & Schreiber, A. (2015). A microinclusion of lower-mantle rock and some other lower-mantle inclusions in diamond. Canadian Mineralogist, 53(1), 83–104. doi:10.3749/canmin.1400070

  • Kaneshima, S. (2003). Small-scale heterogeneity at the top of the lower mantle around the Mariana slab. Earth and Planetary Science Letters, 209, 85–101. doi:10.1016/S0012-821X(03)00048-7

  • Kaneshima, S. (2009). Seismic scatterers at the shallowest lower mantle beneath subducted slabs. Earth and Planetary Science Letters, 286, 304–315. doi:10.1016/j.epsl.2009.06.044

  • Kaneshima, S. (2013). Lower mantle seismic scatterers below the subducting Tonga slab: Evidence for entrainment of transition zone material. Physics of the Earth and Planetary Interiors, 222, 35–46. doi:10.1016/j.pepi.2013.07.001

  • Kaneshima, S. (2016). Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105–114. doi:10.1016/j.pepi.2016.05.004

  • Kaneshima, S., & Helffrich, G. (1998). Detection of lower mantle scatterers northeast of the Marianna subduction zone using short-period array data. Journal of Geophysical Research, 103, 4825–4838.

    Google Scholar 

  • Kaneshima, S., & Helffrich, G. (1999). Dipping low-velocity layer in the mid-lower mantle: Evidence for geochemical heterogeneity. Science, 283, 1888–1891.

    Google Scholar 

  • Kaneshima, S., & Helffrich, G. (2003). Subparallel dipping heterogeneities in the mid-lower mantle. Journal of Geophysical Research 108(B5), 2272. doi:10.1029/2001JB001596

  • Kaneshima, S., & Helffrich, G. (2010). Small scale heterogeneity in the mid-lower mantle beneath the circum-Pacific area. Physics of the Earth and Planetary Interiors, 183, 91–103. doi:10.1016/j.pepi.2010.03.011

  • Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., & Ito E. (2010). Adiabatic temperature profile in the mantle. Physics of the Earth and Planetary Interiors, 183, 212–218. doi: 10.1016/j.pepi.2010.07.001

  • Kawakatsu, H., & Niu, F. L. (1994) Seismic evidence for a 920-km discontinuity in the mantle, Nature, 371, 301–305.

    Google Scholar 

  • Kellogg, L. H., & Turcotte, D. L. (1990) Mixing and the distribution of heterogeneities in a chaotically convecting mantle. Journal of Geophysical Research: Solid Earth, 95(B1), 421–432. doi:10.1029/JB095iB01p00421

  • Kellogg, L. H., Hager, B. H., & van der Hilst, R. D. (1999). Compositional stratification in the deep mantle, Science, 283, 1881–1884.

    Google Scholar 

  • Kennett, B., Engdahl, E., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122, 108–124.

    Google Scholar 

  • Krüger, F., Banumann, M., Scherbaum, F., & Weber, M. (2001). Mid mantle scatterers near the Mariana slab detected with a double array method. Geophysical Research Letters, 28, 667–670.

    Google Scholar 

  • Labrosse, S., Hernlund, J. W., & Coltice, N. (2007). A crystallizing dense magma ocean at the base of Earth’s mantle. Nature, 450, 866–869.

    Google Scholar 

  • Lee, C.-T. A., Luffi, P., Höink, T., Li, J., Dasgupta, R., & Hernlund, J. (2010). Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature, 463, 930–933.

    Google Scholar 

  • Le Stunff, Y., Wicks, C. W., & Jr., Romanowicz, B. (1995). Evidence for mid-mantle reflectors. Science, 270(5233), 74–77.

    Google Scholar 

  • Le Stunff, Y., Wicks, C. W., & Jr., Romanowicz , B. (2015) P′P′ Precursors under Africa: Evidence for mid-mantle reflectors. Science, 270(5233), 74–77.

    Google Scholar 

  • Li, J., & Yuen, D. A. (2014). Mid-mantle heterogeneities associated with Izanagi plate: Implications for regional mantle viscosity. Earth and Planetary Science Letters, 385, 137–144.

    Google Scholar 

  • Li, Y., Deschamps, F., & Tackley, P.J. (2014). The stability and structure of primordial reservoirs in the lower mantle: insights from models of thermochemical convection in three-dimensional spherical geometry. Geophysical Journal International, 199, 914–930. doi:10.1093/gji/ggu295

  • Liu, K., Gao, S., Silver, P., & Zhang, Y. (2003). Mantle layering across central South America. Journal of Geophysical Research, 108(B11), 2510. doi:10.1029/2002JB002208

  • Ma, X., Sun, X., Wiens, D.A., Wend, L., Nyblade, A., Anandakrishnan, S., et al. (2016). Strong seismic scatterers near the core–mantle boundary north of the Pacific Anomaly. Physics of the Earth and Planetary Interiors, 253, 21–30. doi:10.1016/j.pepi.2016.01.007

  • Manga, M. (1996). Mixing of heterogeneities in the mantle: Effect of viscosity differences. Geophysical Research Letters, 23(4), 403–406.

    Google Scholar 

  • Muirhead, K. J., & Hales, A. L. (1980). Evidence for P wave velocity discontinuities at depths greater than 650 km in the mantle. Physics of the Earth and Planetary Interiors, 23, 304–313.

    Google Scholar 

  • Niu, F. (2014). Distinct compositional thin layers at mid-mantle depths beneath northeast China revealed by the US Array. Earth and Planetary Science Letters, 402, 305–312. doi:10.1016/j.epsl.2013.02.015

  • Niu, F., & Kawakatsu, H. (1997). Depth variation of the mid-mantle seismic discontinuity. Geophysical Research Letters, 24, 429–432.

    Google Scholar 

  • Niu, F., Kawakatsu, H., & Fukao, Y. (2003). Seismic evidence for a chemical heterogeneity in the midmantle: A strong and slightly dipping seismic reflector beneath the Mariana subduction zone. Journal of Geophysical Research, 108(B9), 2419. doi:10.1029/2002JB002384

  • Nomura, R., K. Hirose, N. Sata, and Ohishi Y. (2010). Precise determination of post-stishovite phase transition boundary and implications for seismic heterogeneities in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 183, 104–109, doi:10.1016/j.pepi.2010.08.004

  • Nomura R., Ozawa H., Tateno S., Hirose K., Hernlund H., Muto S., et al. (2011). Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature, 473, 199–203.

    Google Scholar 

  • Petersen, N., Gossler, J., Kind, R, Stammler, K., & Vinnik, L. (1993). Precursorsto SS and the structure of transition zone of the north-western Pacific. Geophysical Research Letters, 20(4), 281–284.

    Google Scholar 

  • Revenaugh, J., & Jordan, T. H. (1991). Mantle Layering From ScS Reverberations. 3. The Upper Mantle. Journal of Geophysical Research, 96(B12) 19781–19810.

    Google Scholar 

  • Revenaugh, J., & Sipkin, S. A. (1994). Mantle discontinuity structure beneath China. Journal of Geophysical Research, 99(B11), 21911–21927.

    Google Scholar 

  • Rost, S., Garnero, E. J., & Williams, Q. (2008). Seismic array detection of subducted oceanic crust in the lower mantle. Journal of Geophysical Research, 113, B06303. doi:10.1029/2007JB005263

  • Ryabchikov, I. D., & Kaminsky, F. V. (2013). The composition of the lower mantle: Evidence from mineral inclusions in diamonds. Doklady Earth Sciences, 453(2), 1246–1249. doi:10.1134/S1028334X13120155

  • Ryabchikov I. D., & Kaminsky F. V. (2014). Physicochemical parameters of material in mantle plumes: Evidence from the thermodynamic analysis of mineral inclusions in sublithospheric diamonds. Geochemistry International, 52(11), 903–911. doi:10.1134/S001670291411007X

  • Shen, Y., Wolfe, C. J., & Solomon, S. C. (2003). Seismological evidence for a mid-mantle discontinuity beneath Hawaii and Iceland. Earth and Planetary Science Letters, 214(1–2), 143–151. doi:10.1016/S0012-821X(03)00349-2

  • Souriau, A. (1986). First analyses of broadband records on the geoscope network: Potential for detailed studies of mantle discontinuities. Geophysical Research Letters, 13 (10), 1011–1014.

    Google Scholar 

  • Thomas, C., Kendall, J.-M., & Lowman, J. (2004). Lower-mantle seismic discontinuities and the thermal morphology of subducted slabs. Earth and Planetary Science Letters, 225, 105–113.

    Google Scholar 

  • Trampert, J., & Fishtner, A. (2013). Global imaging of the Earth’s deep interior seismic constrains on anisotropy, density and attenuation. In: S.-I. Karato, (Ed.), Physics and Chemistry of Deep Earth. (pp. 324–351). USA: Wiley.

    Google Scholar 

  • Tromp, J., & Ishii, M. (1998) Normal mode and free-air gravity constraints on the Large Scale Structure of the Mantle (abstract). Fall AGU Meeting. Eos, Transactions American Geophysical Union, 79(45, Suppl.), F598.

    Google Scholar 

  • Tsuchiya, T. (2011). Elasticity of subducted basaltic crust at the lower mantle pressures: insights on the nature of deep mantle heterogeneity. Physics of the Earth and Planetary Interiors, 188, 142–149. doi:10.1016/j.pepi.2011.06.018

  • Tsuchiya, T. (2013). Elasticity of subducted basaltic crust at the lower mantle pressures: Insights of the nature of deep mantle heterogeneity. Physics of the Earth and Planetary Interiors, 188, 142–149. doi:10.1016/j.pepi.2011.06.018

  • Vanacore, E., Niu, F., & Kawakatsu, H. (2006). Observations of the mid-mantle discontinuity beneath Indonesia from S to P converted waveforms. Geophysical Research Letters, 33, L04302. doi:10.1029/2005GL025106

  • van der Hilst, R. D., & Kárason, H. (1999). Compositional heterogeneity in the bottom 1000 Kilometers of Earth’s mantle: Toward a hybrid convection model. Science, 283, 1885–1888.

    Google Scholar 

  • Vinnik, L., Niu, F., & Kawakatsu, H. (1998). Broadband converted phases from midmantle discontinuities. Earth Planets Space, 50, 987–99.

    Google Scholar 

  • Vinnik, L., Kato, M., & Kawakatsu, H. (2001). Search for seismic discontinuities in the lower mantle. Geophysical Journal International, 147, 41–56.

    Google Scholar 

  • Vinnik, L. P., Oreshin, S. I., Speziale, S., & Weber, M. (2010) Mid-mantle layering from SKS receiver functions. Geophysical Research Letters, 37, L24302.

    Google Scholar 

  • Wicks, Jr., C. W., & Richards, M. A. (1993). A detailed map of the 660-kilometer discontinuity beneath the Izu-Bonin subduction zone. Science, 261, 1424–1427.

    Google Scholar 

  • Wicks, C., Weber, M., Le Stunff, Y., & Romanowicz, R. (1996). California broadband array evidence for an upper mantle reflector beneath the West Mariana Ridge (abstract). Fall AGU meeting, San Francisco, Eos, Transactions American Geophysical Union, 77(46, Suppl.), F492.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kaminsky, F.V. (2017). Seismic Heterogeneities and Their Nature in the Lower Mantle. In: The Earth's Lower Mantle. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-55684-0_10

Download citation

Publish with us

Policies and ethics