Skip to main content

Parallel Algorithms for a 3D Photochemical Model of Pollutant Transport in the Atmosphere

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 687))

Included in the following conference series:

Abstract

In this paper, a numerical scheme for solving a system of convection-diffusion-kinetics equations of a mathematical model of transport of small pollutant components with their chemical interactions in the atmospheric boundary layer is presented. A new monotonized high-accuracy spline scheme is proposed to approximate the convective terms. Various approaches to parallelization of the computational algorithm are developed and tested. These are based on a two-dimensional decomposition of the calculation domain with synchronous or asynchronous interprocessor data communications for distributed memory computer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berlyand, M.E.: Prediction and Regulation of Air Pollution. Gidrometeoizdat, Leningrad (1985)

    Google Scholar 

  2. Penenko, V.V., Aloyan, A.E.: Models and Methods for Environmental Protection Problems. Nauka, Novosibirsk (1985)

    Google Scholar 

  3. Dabdub, D., Seinfeld, J.H.: Parallel computation in atmospheric chemical modeling. Parallel Comput. 22, 111–130 (1996)

    Article  MATH  Google Scholar 

  4. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

  5. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rivin, G.S., Voronina, P.V.: Aerosol transport in the atmosphere: choosing a finite-difference scheme. Optika atmosfery i okeana 10, 623–633 (1997)

    Google Scholar 

  7. Belikov, D.A., Starchenko, A.V.: Investigation of formation of secondary pollutant (ozone) in the atmosphere of Tomsk. Optika atmosfery i okeana 18, 435–443 (2005)

    Google Scholar 

  8. Starchenko, A.V.: Simulation of pollutant transport in a homogeneous atmospheric boundary layer. In: Proceedings of International Conference on ENVIROMIS-2000, pp. 77–82. Publ. House of Tomsk Scientific and Technical Information Center, Tomsk (2000)

    Google Scholar 

  9. Bart, A.A., Starchenko, A.V., Fazliev, A.Z.: Information-computational system for air quality short-range prognosis over territory of Tomsk. Optika atmosfery i okeana 25, 594–601 (2012)

    Google Scholar 

  10. Hurley, P.J.: The air pollution model (TAPM) version 2. Part 1: technical description. CSIRO Atmospheric Research Technical Paper, No. 55 (2002)

    Google Scholar 

  11. Starchenko, A.V., Bart, A.A., Bogoslovskiy, N.N., Danilkin, E.A., Terenteva, M.V.: Mathematical modelling of atmospheric processes above an industrial centre. In: Proceedings of SPIE 9292, 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, pp. 929249/1-9 (2014)

    Google Scholar 

  12. Patankar, S.V.: Numerical Methods for Solving Heat Transfer and Fluid Dynamics Problems. Energoatomizdat, Moscow (1984). Transl. from English, Ed.: V.D. Violensky

    Google Scholar 

  13. van Leer, B.: Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 23, 276–299 (1977)

    Article  MATH  Google Scholar 

  14. Kvasov, B.I.: Methods of Isogeometric Spline Approximation. FIZMATLIT, Moscow (2006)

    Google Scholar 

  15. Čada, M., Torrilhon, M.: Compact third-order limiter functions for finite volume methods. J. Comput. Phys. 228, 4118–4145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Starchenko, A.V., Danilkin, E.A., Laeva, V.I., Prokhanov, S.A.: A Practical Course on Parallel Computation Methods. Publ. House of MSU, Moscow (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation, Public Contract no. 5.628.2014/K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Starchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Starchenko, A., Danilkin, E., Semenova, A., Bart, A. (2016). Parallel Algorithms for a 3D Photochemical Model of Pollutant Transport in the Atmosphere. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2016. Communications in Computer and Information Science, vol 687. Springer, Cham. https://doi.org/10.1007/978-3-319-55669-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55669-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55668-0

  • Online ISBN: 978-3-319-55669-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics