Skip to main content

Numerical Model of Shallow Water: The Use of NVIDIA CUDA Graphics Processors

  • Conference paper
  • First Online:
Book cover Supercomputing (RuSCDays 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 687))

Included in the following conference series:

Abstract

In the paper we discuss the main features of the software package for numerical simulations of the surface water dynamics. We consider an approximation of the shallow water equations together with the parallel technologies for NVIDIA CUDA graphics processors. The numerical hydrodynamic code is based on the combined Lagrangian-Euler method (CSPH-TVD). We focused on the features of the parallel implementation of Tesla line of graphics processors: C2070, K20, K40, K80. By using hierarchical grid systems at different spatial scales we increase the efficiency of the computing resources usage and speed up our simulations of a various flooding problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In particular, the one is at Research Computing Center of M.V. Lomonosov Moscow State University [12].

References

  1. Belousov, A.V., Khrapov, S.S.: Gasdynamic modeling on the basis of the Lagrangian and Euler scheme LES-ASG. J. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1: Matematika. Fizika (Sci. J. VolSU. Math. Phys.) 5(30), 36–51 (2015)

    Google Scholar 

  2. Bonoli, S., Mayer, L., Kazantzidis, S., Madau, P., Bellovary, J., Governato, F.: Black hole starvation and bulge evolution in a Milky Way-like galaxy. J. Mon. Not. R. Astron. Soc. 459, 2603–2617 (2016)

    Article  Google Scholar 

  3. Dyakonova, T.A., Pisarev, A.V., Khoperskov, A.V., Khrapov, S.S.:: Mathematical model of surface water dynamics. J. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1: Matematika. Fizika (Sci. J. VolSU. Math. Phys.) 1(20), 35–44 (2014)

    Google Scholar 

  4. Dyakonova, T.A., Khrapov, S.S., Khoperskov, A.V.: The problem of boundary conditions for the shallow water equations. Vestnik Udmurtskogo Universiteta. Mekhanika. Komp’yuternye nauki (Bull. Udmurt Univ. Math. Mech.) 26(3), 401–417 (2016)

    Google Scholar 

  5. Glinskiy, B., Kulikov, I., Snytnikov, A., Romanenko, A., Chernykh, I., Vshivkov, V.: Co-design of parallel numerical methods for plasma physis and astrophysics. J. Supercomput. Front. Innov. 1, 88–98 (2014)

    Google Scholar 

  6. Khrapov, S.S., Khoperskov, A.V., Kuz’min, N.M., Pisarev, A.V., Kobelev, I.A.: A numerical scheme for simulating the dynamics of surface water on the basis of the combined SPH-TVD approach. J. Vychislitel’nye Metody i Programmirovanie (Numer. Methods Program.) 12(2), 282–297 (2011)

    Google Scholar 

  7. Khrapov, S., Pisarev, A., Kobelev, I., Zhumaliev, A., Agafonnikova, E., Losev, A., Khoperskov, A.: The numerical simulation of shallow water: estimation of the roughness coefficient on the flood stage. J. Adv. Mech. Eng. 5(2013), 1–11 (2013). doi:10.1155/2013/787016

    Google Scholar 

  8. Kuz’min, N.M., Belousov, A.V., Shushkevich, T.S., Khrapov, S.S.: Numerical scheme CSPH-TVD: investigation of influence slope limiters. J. Vestnik Volgogradskogo Gosudarstvennogo Universiteta. Seriya 1: Matematika. Fizika (Sci. J. VolSU. Math. Phys.) 1(20), 22–34 (2014)

    Article  Google Scholar 

  9. Moreland, K., Larsen, M., Childs, H.: Visualization for exascale: portable performance is critical. J. Supercomput. Front. Innov. 2(3), 67–75 (2015)

    Google Scholar 

  10. Pisarev, A.V., Khrapov, S.S., Voronin, A.A., Dyakonova, T.A., Tsyrkova, E.A.: The role of infiltration and evaporation in the flooding dynamics of the Volga-Akhtuba floodplain. J. Vestnik Volgogradskogo Gosudarstvennogo Universiteta. Seriya 1, Matematika. Fizika (Sci. J. VolSU. Math. Phys.) 1(16), 36–41 (2012)

    Google Scholar 

  11. Pisarev, A.V., Khrapov, S.S., Agafonnikova, E.O., Khoperskov, A.V.: Numerical model of shallow water dynamics in the channel of the Volga: estimation of roughness. J. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye nauki (Bull. Udmurt Univ. Math. Mech.) 1, 114–130 (2013)

    Article  Google Scholar 

  12. Sadovnichy, V., Tikhonravov, A., Voevodin, V., Opanasenko, V.: Lomonosov: supercomputing at Moscow state university. In: Contemporary High Performance Computing: From Petascale toward Exascale, pp. 283–307. Chapman & Hall/CRC Computational Science, Boca Raton/CRC Press (2013)

    Google Scholar 

  13. Voronin, A.A., Eliseeva, M.V., Khrapov, S.S., Pisarev, A.V., Khoperskov, A.V.: The Regimen control task in the eco-economic system Volzhskaya hydroelectric power station - the Volga-Akhtuba floodplain. II. Synthesis of Control System. J. Problemy Upravleniya (Control Sci.) 6, 19–25 (2012)

    Google Scholar 

  14. Voronin, A., Vasilchenko, A., Pisareva, M., Pisarev, A., Khoperskov, A., Khrapov, S., Podschipkova, J.: Designing a system for ecological-economical management of the Volga-Akhtuba floodplain on basis of hydrodynamic and geoinformational simulation. J. Upravlenie Bol’shimi Sistemami (Large-Scale Syst. Control) 55, 79–102 (2015)

    Google Scholar 

Download references

Acknowledgments

The numerical simulations have been performed at the Research Computing Center (Moscow State University). AVK has been supported by the Russian Scientific Foundation (grant 15-02-06204), SSK is thankful to the RFBR (grant 16-07-01037). The simulation results part was developed under support from the RFBR and the Administration of Volgograd region grant 15–45-02655 (TAD). The study is carried out within the framework of government task by the Ministry of Education and Science of the Russian Federation (research work title No. 2.852.2017/PCH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Dyakonova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Dyakonova, T., Khoperskov, A., Khrapov, S. (2016). Numerical Model of Shallow Water: The Use of NVIDIA CUDA Graphics Processors. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2016. Communications in Computer and Information Science, vol 687. Springer, Cham. https://doi.org/10.1007/978-3-319-55669-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55669-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55668-0

  • Online ISBN: 978-3-319-55669-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics