Skip to main content

MSCs and Innovative Injectable Biomaterials in Dentistry

  • Chapter
  • First Online:
MSCs and Innovative Biomaterials in Dentistry

Abstract

This chapter provides an overview of innovative strategies in the field of oral cavity regeneration. In particular, the benefits of using injectable biomaterials in dentistry, especially for their restorative and regenerative applications are reported. Here also a detailed analysis of several experimental models for teeth regeneration is carried out. Over the past decade, recent findings in stem cell biology and tissue engineering suggest novel approaches for the regeneration of dental tissues or entire new teeth. Stem cells have the potential to self-renew and to give rise to a variety of cell types that ensure tissue regeneration. This chapter provides the various stem cell-based treatment strategies that could be translated in dental practice. The clinical translation of stem-cell-based oral cavity regeneration requires the use of injectable scaffolds that are able to reproduce dental pulp-like microenvironment in order to make odontoblast precursors capable of generating new tubular dentin. In this context, a considerable attention has been given to sol-gel process a new strategy of manufacturing composite biomaterials useful in periodontology and in oral and maxillofacial surgery. For example, nano-hydroxyapatite (the main constituent of the mineral part of teeth) obtained by using sol-gel process showed significant improvements in its mechanical and biological properties. Recent studies demonstrated that the sol-gel process confers distinctive features to composite materials for teeth repair, thus contributing to a more efficient replacement of oral cavity bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drangsholt MT. A new causal model of dental diseases associated with endocarditis. Ann Periodontol. 1998;3(1):184–96.

    Article  CAS  PubMed  Google Scholar 

  2. Raucci MG, Alvarez-Perez M, Giugliano D, Zeppetelli S, Ambrosio L. Properties of carbon nanotube-dispersed Sr-hydroxyapatite injectable material for bone defects. Regen Biomater. 2016;3(1):13–23. doi:10.1093/rb/rbv026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wennström A, Boman UW, Ahlqwist M, Björkelund C, Hakeberg M. Perceived mental stress in relation to oral health over time in middle-aged Swedish women. Community Dent Health. 2015;32(4):241–6.

    PubMed  Google Scholar 

  4. Miran S, Mitsiadis TA, Pagella P. Innovative dental stem cell-based research approaches: the future of dentistry. Stem Cells Int. 2016;2016:7231038.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Salaria SK, Ghuman SK, Kumar S, Sharma G. Management of localized advance loss of periodontal support associated grade II furcation and intrabony defect in chronic periodontitis patient through amalgamation of platelet-rich fibrin and hydroxyapatite bioactive glass composite granules. Contemp Clin Dent. 2016;7(3):405–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gupta G. Clinical and radiographic evaluation of intra-bony defects in localized aggressive periodontitis patients with platelet rich plasma/hydroxyapatite graft: a comparative controlled clinical trial. Contemp Clin Dent. 2014;5(4):445–51.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mitsiadis TA, Orsini G, Jimenez-Rojo L. Stemcell-based approaches in dentistry. Eur Cells Mater. 2015;30:248–57.

    Article  CAS  Google Scholar 

  8. Mitsiadis TA, Harada H. Regenerated teeth:the future of tooth replacement. An update Regen Med. 2015;10(1):5–8.

    Article  CAS  PubMed  Google Scholar 

  9. Ricketts D. Management of the deep carious lesion and the vital pulp dentine complex. Br Dent J. 2001;191(11):606–10.

    CAS  PubMed  Google Scholar 

  10. Jiménez-Rojo L, Granchi Z, Woloszyk A, Filatova A, Pagella P, Mitsiadis TA. Regenerative dentistry: stem cells meet nanotechnology (chapter 1). Boca Raton: Pan Stanford; 2016.

    Google Scholar 

  11. Pagella P, Neto E, Lamghari M, Mitsiadis TA. Investigation of orofacial stem cell niches and their innervation through microfluidic devices. Eur Cells Mater. 2015;29:213–23.

    Article  CAS  Google Scholar 

  12. Albuquerque MT, Valera MC, Nakashima M, Nör JE, Bottino MC. Tissue-engineering-based strategies for regenerative endodontics. J Dent Res. 2014;93(12):1222–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TM, Kowolik MJ, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent Mater. 2012;28:703–21.

    Article  CAS  PubMed  Google Scholar 

  14. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod. 2008;34:962–9.

    Article  PubMed  Google Scholar 

  15. Huang GT. Pulp and dentin tissue engineering and regeneration: current progress. Regen Med. 2009;4:697–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosa V, Zhang Z, Grande RH, Nör JE. Dental pulp tissue engineering in full-length human root canals. J Dent Res. 2013;92:970–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abou Neel EA, Chrzanowski W, Salih VM, Kim HW, Knowles JC. Tissue engineering in dentistry. J Dent. 2014;42(8):915–28.

    Article  CAS  PubMed  Google Scholar 

  18. Whitman DH, Berry R, Green D. Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg. 1997;55:1294–9.

    Article  CAS  PubMed  Google Scholar 

  19. Marx RE, Carlson ER, Eichstaedt RM, et al. Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85:638–46.

    Article  CAS  PubMed  Google Scholar 

  20. Marrelli M, Pacifici A, Di Giorgio G, Cassetta M, Stefanelli LV, Gargari M, Promenzio L, Annibali S, Cristalli MP, Chiaravalloti E, Pacifici L, Tatullo M. Diagnosis and treatment of a rare case of adenomatoid odontogenic tumor in a young patient affected by attenuated familial adenomatosis polyposis (aFAP): case report and 5 year follow-up. Eur Rev Med Pharmacol Sci. 2014;18(2):265–9.

    CAS  PubMed  Google Scholar 

  21. Tatullo M, Marrelli M, Cassetta M, Pacifici A, Stefanelli LV, Scacco S, Dipalma G, Pacifici L, Inchingolo F. Platelet rich fibrin (P.R.F.) in reconstructive surgery of atrophied maxillary bones: clinical and histological evaluations. Int J Med Sci. 2012;9(10):872–80.

    Article  PubMed  PubMed Central  Google Scholar 

  22. TatulloM, MarrelliM, PaduanoF. The regenerative medicine in oral and maxillofacial surgery: the most important innovations in the clinical application of mesenchymal stem cells. Int J Med Sci2015;12(1):72–77. doi:10.7150/ijms.10706. eCollection 2015.

  23. Dobie K, Smith G, Sloan AJ, Smith AJ. Effects of alginate hydrogels and TGF-β1 on human dental pulp repair in vitro. Connect Tiss Res. 2002;43:387–90.

    Article  CAS  Google Scholar 

  24. Yang X, Han G, Pang X, Fan M. Chitosan/collagen scaffold containing bone morphogenetic protein-7 DNA supports dental pulp stem cell differentiation in vitro and in vivo. J Biomed Mater Res A. 2012; doi:10.1002/jbm.a.34064.

    Google Scholar 

  25. van den Dolder J, Farber E, Spauwen PH, Jansen JA. Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials. 2003;24:1745–50.

    Article  PubMed  Google Scholar 

  26. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55.

    Article  CAS  PubMed  Google Scholar 

  27. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45:e54.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moshaverinia A, Chen C, Xu X, Ansari S, Zadeh HH, Schricker SR, Paine ML, Moradian-Oldak J, Khademhosseini A, Snead ML, Shi S. Regulation of the stem cell-host immune system interplay using hydrogel coencapsulation system with an anti-inflammatory drug. Adv Funct Mater. 2015;25(15):2296–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sundelacruz S, Kaplan DL. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol. 2009;20:646–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100:1249–60.

    Article  CAS  PubMed  Google Scholar 

  31. Gimble JM. Adipose tissue-derived therapeutics. Expert Opin Biol Ther. 2003;3:705–13.

    Article  CAS  PubMed  Google Scholar 

  32. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    Article  CAS  PubMed  Google Scholar 

  33. Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem. 2006 Dec 1;99(5):1285–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nagamura-Inoue T, He H. Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World J Stem Cells. 2014;6(2):195–202.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xiao L, Nasu M. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells. Stem Cells Cloning. 2014;7:89–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. AndersonHJ, SahooJK, UlijnRV, DalbyMJ. Mesenchymal stem cell fate: applying biomaterials for control of stem cell behavior. Front Bioeng Biotechnol2016 13;4:38. doi: 10.3389/fbioe.2016.00038. eCollection 2016.

  37. Kovach TK, Dighe AS, Lobo PI, Cui Q. Interactions between MSCs and immune cells: implications for bone healing. J Immunol Res. 2015;2015:752510. doi:10.1155/2015/752510. Epub 2015 Apr 27.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Qu T, Jing J, Jiang Y, Taylor RJ, Feng JQ, Geiger B, Liu X. Magnesium-containing nanostructured hybrid scaffolds for enhanced dent in regeneration. Tissue Eng Part A. 2014;20(17–18):2422–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qu T, Liu X. Nano-structured gelatin/bioactive glass hybrid scaffolds for the enhancement of odontogenic differentiation of human dental pulp stem cells. J Mater Chem B Mater Biol Med. 2013;1(37):4764–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  PubMed  Google Scholar 

  41. Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Zhang Y, Lam FF, Kang S, Xia JC, Lai WH, Au KW, Chow YY, Siu CW, Lee CN, Tse HF. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation. 2010;121:1113–23.

    Article  PubMed  Google Scholar 

  42. Zhang QZ, Nguyen AL, Yu WH, Le AD. Human oral mucosa and gingiva: a unique reservoir for mesenchymal stem cells. J Dent Res. 2012;91:1011–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kishi T, Takao T, Fujita K, Taniguchi H. Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands. Biochem Biophys Res Commun. 2006;340:544–52.

    Article  CAS  PubMed  Google Scholar 

  44. De Bari C, Dell’Accio F, Vanlauwe J, Eyckmans J, Khan IM, Archer CW, Jones EA, McGonagle D, Mitsiadis TA, Pitzalis C, Luyten FP. Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum. 2006;54:1209–21.

    Article  PubMed  Google Scholar 

  45. Marrelli M, Paduano F, Tatullo M. Cells isolated from human periapical cysts express mesenchymal stem cell-like properties. Int J Biol Sci. 2013;9:1070–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumarand A, Brockes JP. Nerve dependence in tissue,organ, and appendage regeneration. Trends Neurosci. 2012;35(11):691–9.

    Google Scholar 

  47. Baylan N, Bhat S, Ditto M, Lawrence JG, Lecka-Czernik B, Yildirim-Ayan E. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Biomed Mater. 2013;8:045011.

    Article  PubMed  Google Scholar 

  48. Cavalcanti BN, Zeitlin BD, Nör JE. A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dent Mater. 2013;29(1): 97–102.

    Google Scholar 

  49. Ishimatsu H, Kitamura C, Morotomi T, Tabata Y, Nishihara T, Chen KK, et al. Formation of dentinal bridge on surface of regenerated dental pulp in dentin defects by controlled release of fibroblast growth factor-2 from gelatin hydrogels. J Endod. 2009;35:858–65.

    Article  PubMed  Google Scholar 

  50. Nagy MM, Tawfik HE, Hashem AA, Abu-Seida AM. Regenerative potential of immature permanent teeth with necrotic pulps after different regenerative protocols. J Endod. 2014;40:192–8.

    Article  PubMed  Google Scholar 

  51. Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP, Zhang C. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A. 2015;21(3–4):550–63.

    Article  CAS  PubMed  Google Scholar 

  52. Lu Q, Pandya M, Rufaihah AJ, Rosa V, Tong HJ, Seliktar D, Toh WS. Modulation of dental pulp stem cell odontogenesis in a tunable PEG-fibrinogen hydrogel system. Stem Cells Int. 2015;2015:525367.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li Y, Fang X, Jiang T. Minimally traumatic alveolar ridge augmentation with a tunnel injectable thermo-sensitive alginate scaffold. J Appl Oral Sci. 2015;23(2):215–23.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Koop R, Merheb J, Quirynen M. Periodontal regeneration with enamel matrix derivative in reconstructive periodontal therapy: a systematic review. J Periodontol. 2012;83:707–20.

    Article  PubMed  Google Scholar 

  55. Prieto EM, Page JM, Harmata AJ, Guelcher SA. Injectable foams for regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6:136–54.

    Article  CAS  PubMed  Google Scholar 

  56. Oortgiesen DA, Meijer GJ, Bronckers AL, Walboomers XF, Jansen JA. Regeneration of the periodontium using enamel matrix derivative in combination with an injectable bone cement. Clin Oral Investig. 2013;17(2):411–21.

    Article  PubMed  Google Scholar 

  57. Boix D, Gauthier O, Guicheux J, Pilet P, Weiss P, Grimandi G, Daculsi G. Alveolar bone regeneration for immediate implant placement using an injectable bone substitute: an experimental study in dogs. J Periodontol. 2004;75(5):663–71.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu Q, Cen L, Yin S, Chen L, Liu G, Chang J, Cui L. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics. Biomaterials. 2008;29(36):4792–9.

    Article  CAS  PubMed  Google Scholar 

  59. Daculsi G, Uzel AP, Weiss P, Goyenvalle E, Aguado E. Developments ininjectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels. J Mater Sci Mater Med. 2010;21(3):855–61.

    Article  CAS  PubMed  Google Scholar 

  60. Ferreira JR, Padilla R, Urkasemsin G, Yoon K, Goeckner K, Hu WS, Ko CC. Titanium-enriched hydroxyapatite-gelatin scaffolds with osteogenically differentiated progenitor cell aggregates for calvaria bone regeneration. Tissue Eng Part A. 2013;19:1803–16.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Joshi N, Sujan S, Joshi K, Parekh H, Dave B. Prevalence, severity and related factors ofdentalcaries in school going children of Vadodara city—an epidemiological study. J Int Oral Health. 2013;5:35.

    Google Scholar 

  62. Srivastava R, Gupta SK, Mathur VP, Goswami A, Nongkynrih B. Prevalence of dental caries and periodontal diseases, and their association with socio-demographic risk factors among older persons in Delhi, India: a community-based study. Southeast Asian J Trop Med Public Health. 2013;44:523.

    PubMed  Google Scholar 

  63. Hodgdon A. Dental and related infections. Emerg Med Clin North Am. 2013;31(2):465–80.

    Article  PubMed  Google Scholar 

  64. Huang GT. Dental pulp and dentin tissue engineering and regeneration: advancement and challenge. Front Biosci (Elite Ed). 2011;3:788–800.

    Google Scholar 

  65. Fonzar F, Fonzar A, Buttolo P, Worthington HV, Esposito M. The prognosis ofroot canal therapy: a 10-year retrospective cohort study on 411 patients with1175 endodontically treated teeth. Eur J Oral Implantol. 2009;2(3):201–8.

    PubMed  Google Scholar 

  66. Kuang R, Zhang Z, Jin X, Hu J, Gupte MJ, Ni L, Ma PX. Nanofibrous spongy microspheres enhance odontogenic differentiation of human dental pulp stem cells. Adv Healthc Mater. 2015;4(13):1993–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang J, Liu X, Jin X, Ma H, Hu J, Ni L, Ma PX. The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly(L-lactic acid) scaffolds in vitro and in vivo. Acta Biomater. 2010;6(10):3856–63.

    Article  CAS  PubMed  Google Scholar 

  68. Casagrande L, Demarco FF, Zhang Z, Araujo FB, Shi S, Nör JE. Dentin-derived BMP-2 and odontoblast differentiation. J Dent Res. 2010;89:603–8.

    Article  CAS  PubMed  Google Scholar 

  69. Suzuki S, Sreenath T, Haruyama N, Honeycutt C, Terse A, Cho A, et al. Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization. Matrix Biol. 2009;28:221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang R, Cooper PR, Smith G, Nör JE, Smith AJ. Angiogenic activity of dentin matrix components. J Endod. 2011;37:26–30.

    Article  PubMed  Google Scholar 

  71. Fang J, Zhang Y, Yan S, Liu Z, He S, Cui L, Yin J. Poly(L-glutamicacid)/chitosan polyelectrolyte complex porous microspheres as cell microcarriers for cartilage regeneration. Acta Biomater. 2014;10(1):276–88.

    Article  CAS  PubMed  Google Scholar 

  72. D’Antò V, Raucci MG, Guarino V, Martina S, Valletta R, Ambrosio L. Behaviour of human mesenchymal stem cells on chemically synthesized HA-PCL scaffolds for hard tissue regeneration. J Tissue Eng Regen Med. 2016;10(2):E147–54.

    Article  PubMed  Google Scholar 

  73. Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol. 2014;5(3):108–14.

    Google Scholar 

  74. Balazsi C, Konya Z, Weber F, et al. Preparation and characterization of carbon nanotube reinforced silicon nitride composites. Mater Sci Eng C. 2003;23:1133–7.

    Article  Google Scholar 

  75. Xia Z, Riester L, Curtin WA, et al. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 2004;52:931–44.

    Article  CAS  Google Scholar 

  76. Nassar EJ, Ciuffi KJ, Calefi PS, Rocha LA, De Faria EH, eSilva MLA, Luz PP, Bandeira LC, Cestari A; Fernandes CN. Biomaterials and sol–gel process: a methodology for the preparation of functional materials (Chapter 1). Biomater Sci Eng. 2016. doi:10.5772/23202.

  77. Aoki N, Yokoyama A, Nodasaka Y, et al. Cell culture on a carbon nanotube scaffold. Biomed Nanotech. 2005;1:402–5.

    Article  CAS  Google Scholar 

  78. Nayak TR, Jian L, Phua LC, et al. Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation. ACS Nano. 2010;4:7717–24.

    Article  CAS  PubMed  Google Scholar 

  79. Narita N, Kobayashi Y, Nakamura H, et al. Multiwalled carbon nanotubes specifically inhibit osteoclast differentiation and function. Nano Lett. 2009;9:1406–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Ambrosio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fasolino, I., Raucci, M.G., Ambrosio, L. (2017). MSCs and Innovative Injectable Biomaterials in Dentistry. In: Tatullo, M. (eds) MSCs and Innovative Biomaterials in Dentistry. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-55645-1_3

Download citation

Publish with us

Policies and ethics