Skip to main content

Platelet Rich Fibrin “PRF” and Regenerative Medicine: ‘The Low-Speed Concept’

  • Chapter
  • First Online:
MSCs and Innovative Biomaterials in Dentistry

Abstract

The multidisciplinary field of tissue engineering has tackled a wide variety of medical challenges over the years with the aim to predictably repair, regenerate or restore damaged and diseased tissues [1–4]. Defects frequently encountered are commonly produced by a variety of underlying conditions caused by congenital abnormalities, injury, disease and/or the effects of aging [1–4]. Many strategies have since been adapted to regenerate these tissues. One of (if not the) key component during the regenerative phases during wound healing is the absolute necessary for ingrowth of a vascular blood source capable of supporting and contributing to cellular function and the future development and maintenance of nutrients across this newly created blood supply [5]. Although normal biomaterial and tissue engineered scaffolds are typically avascular by nature, over 15 years ago a series of proposed motifs introduced blood concentrates as a regenerative modality in order to improve the vascular network to obtain successfully regenerated soft or hard tissues where lack of a blood supply was often at the forefront of the defect [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coury AJ. Expediting the transition from replacement medicine to tissue engineering. Regen Biomater. 2016;3(2):111–3.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dai R, et al. Adipose-derived stem cells for tissue engineering and regenerative medicine applications. Stem Cells Int. 2016;2016:6737345.

    PubMed  PubMed Central  Google Scholar 

  3. Rouwkema J, Khademhosseini A. Vascularization and angiogenesis in tissue engineering: beyond creating static networks. Trends Biotechnol. 2016;34(9):733–45.

    Article  CAS  PubMed  Google Scholar 

  4. Zhu W, et al. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103–12.

    Article  CAS  PubMed  Google Scholar 

  5. Upputuri PK, et al. Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine. Biomed Res Int. 2015;2015:783983.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gosain A, DiPietro LA. Aging and wound healing. World J Surg. 2004;28(3):321–6.

    Article  PubMed  Google Scholar 

  8. Eming SA, et al. Regulation of angiogenesis: wound healing as a model. Prog Histochem Cytochem. 2007;42(3):115–70.

    Article  CAS  PubMed  Google Scholar 

  9. Eming SA, et al. Chronic wounds. Novel approaches in research and therapy. Hautarzt. 2007;58(11):939–44.

    Article  CAS  PubMed  Google Scholar 

  10. Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost. 2011;105(Suppl 1):S13–33.

    Article  CAS  PubMed  Google Scholar 

  11. de Vries RA, et al. Viability of platelets collected by apheresis versus the platelet-rich plasma technique: a direct comparison. Transfus Sci. 1993;14(4):391–8.

    Article  PubMed  Google Scholar 

  12. Anfossi G, et al. Influence of propranolol on platelet aggregation and thromboxane B2 production from platelet-rich plasma and whole blood. Prostaglandins Leukot Essent Fatty Acids. 1989;36(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  13. Fijnheer R, et al. Platelet activation during preparation of platelet concentrates: a comparison of the platelet-rich plasma and the buffy coat methods. Transfusion. 1990;30(7):634–8.

    Article  CAS  PubMed  Google Scholar 

  14. Jameson C. Autologous platelet concentrate for the production of platelet gel. Lab Med. 2007;38:39–42.

    Article  Google Scholar 

  15. Whitman DH, Berry RL, Green DM. Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg. 1997;55(11):1294–9.

    Article  CAS  PubMed  Google Scholar 

  16. Marx RE, et al. Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(6):638–46.

    Article  CAS  PubMed  Google Scholar 

  17. Marx RE. Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg. 2004;62(4):489–96.

    Article  PubMed  Google Scholar 

  18. Lucarelli E, et al. A recently developed bifacial platelet-rich fibrin matrix. Eur Cell Mater. 2010;20:13–23.

    Article  CAS  PubMed  Google Scholar 

  19. Saluja H, Dehane V, Mahindra U. Platelet-rich fibrin: a second generation platelet concentrate and a new friend of oral and maxillofacial surgeons. Ann Maxillofac Surg. 2011;1(1):53–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kobayashi E et al. Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin Oral Investig 2016.

    Google Scholar 

  21. Dohan Ehrenfest DM, et al. Three-dimensional architecture and cell composition of a Choukroun’s platelet-rich fibrin clot and membrane. J Periodontol. 2010;81(4):546–55.

    Article  CAS  PubMed  Google Scholar 

  22. Choukroun J, et al. Une opportunité en Paro-implantologie: le PRF. Implantodontie. 2001;42(55):e62.

    Google Scholar 

  23. Choukroun J, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part IV: clinical effects on tissue healing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):e56–60.

    Article  PubMed  Google Scholar 

  24. Dohan DM, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):e37–44.

    Article  PubMed  Google Scholar 

  25. Dohan DM, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):e45–50.

    Article  PubMed  Google Scholar 

  26. Dohan DM, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part III: leucocyte activation: a new feature for platelet concentrates? Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):e51–5.

    Article  PubMed  Google Scholar 

  27. Martin P, Leibovich SJ. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol. 2005;15(11):599–607.

    Article  CAS  PubMed  Google Scholar 

  28. Tsirogianni AK, Moutsopoulos NM, Moutsopoulos HM. Wound healing: immunological aspects. Injury. 2006;37(Suppl 1):S5–12.

    Article  PubMed  Google Scholar 

  29. Adamson R. Role of macrophages in normal wound healing: an overview. J Wound Care. 2009;18(8):349–51.

    Article  CAS  PubMed  Google Scholar 

  30. Davis VL, et al. Platelet-rich preparations to improve healing. Part I: workable options for every size practice. J Oral Implantol. 2014;40(4):500–10.

    Article  PubMed  Google Scholar 

  31. Davis VL, et al. Platelet-rich preparations to improve healing. Part II: platelet activation and enrichment, leukocyte inclusion, and other selection criteria. J Oral Implantol. 2014;40(4):511–21.

    Article  PubMed  Google Scholar 

  32. Ghasemzadeh M, Hosseini E. Intravascular leukocyte migration through platelet thrombi: directing leukocytes to sites of vascular injury. Thromb Haemost. 2015;113(6):1224–35.

    Article  PubMed  Google Scholar 

  33. Barbeck M, et al. Addition of blood to a phycogenic bone substitute leads to increased in vivo vascularization. Biomed Mater. 2015;10(5):055007.

    Article  PubMed  CAS  Google Scholar 

  34. Weibrich G, et al. Correlation of platelet concentration in platelet-rich plasma to the extraction method, age, sex, and platelet count of the donor. Int J Oral Maxillofac Implants. 2001;16(5):693–9.

    CAS  PubMed  Google Scholar 

  35. Weibrich G, et al. Comparison of platelet, leukocyte, and growth factor levels in point-of-care platelet-enriched plasma, prepared using a modified Curasan kit, with preparations received from a local blood bank. Clin Oral Implants Res. 2003;14(3):357–62.

    Article  PubMed  Google Scholar 

  36. Kawazoe T, Kim HH. Tissue augmentation by white blood cell-containing platelet-rich plasma. Cell Transplant. 2012;21(2–3):601–7.

    Article  PubMed  Google Scholar 

  37. Perut F, et al. Preparation method and growth factor content of platelet concentrate influence the osteogenic differentiation of bone marrow stromal cells. Cytotherapy. 2013;15(7):830–9.

    Article  CAS  PubMed  Google Scholar 

  38. Pirraco RP, Reis RL, Marques AP. Effect of monocytes/macrophages on the early osteogenic differentiation of hBMSCs. J Tissue Eng Regen Med. 2013;7(5):392–400.

    Article  CAS  PubMed  Google Scholar 

  39. Hoaglin DR, Lines GK. Prevention of localized osteitis in mandibular third-molar sites using platelet-rich fibrin. Int J Dent. 2013;2013:875380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bilginaylar K, Uyanik LO. Evaluation of the effects of platelet-rich fibrin and piezosurgery on outcomes after removal of impacted mandibular third molars. Br J Oral Maxillofac Surg. 2016;54(6):629–33.

    Article  CAS  PubMed  Google Scholar 

  41. Winkler IG, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 2010;116(23):4815–28.

    Article  CAS  PubMed  Google Scholar 

  42. Alexander KA, et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res. 2011;26(7):1517–32.

    Article  CAS  PubMed  Google Scholar 

  43. Chang MK, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181(2):1232–44.

    Article  CAS  PubMed  Google Scholar 

  44. Pettit AR, et al. Osteal macrophages: a new twist on coupling during bone dynamics. Bone. 2008;43(6):976–82.

    Article  PubMed  Google Scholar 

  45. Ghanaati S, et al. Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells. Biomaterials. 2011;32(32):8150–60.

    Article  CAS  PubMed  Google Scholar 

  46. Miron RJ, Bosshardt DD. OsteoMacs: key players around bone biomaterials. Biomaterials. 2016;82:1–19.

    Article  CAS  PubMed  Google Scholar 

  47. Mosesson MW, Siebenlist KR, Meh DA. The structure and biological features of fibrinogen and fibrin. Ann N Y Acad Sci. 2001;936(1):11–30.

    Article  CAS  PubMed  Google Scholar 

  48. Chase AJ, Newby AC. Regulation of matrix metalloproteinase (matrixin) genes in blood vessels: a multi-step recruitment model for pathological remodelling. J Vasc Res. 2003;40(4):329–43.

    Article  CAS  PubMed  Google Scholar 

  49. Mazzucco L, Borzini P, Gope R. Platelet-derived factors involved in tissue repair-from signal to function. Transfus Med Rev. 2010;24(3):218–34.

    Article  PubMed  Google Scholar 

  50. Nguyen LH, et al. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng Part B Rev. 2012;18(5):363–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994;331(19):1286–92.

    Article  CAS  PubMed  Google Scholar 

  52. Bowen T, Jenkins RH, Fraser DJ. MicroRNAs, transforming growth factor beta-1, and tissue fibrosis. J Pathol. 2013;229(2):274–85.

    Article  CAS  PubMed  Google Scholar 

  53. Roberts, A.B., et al. Transforming growth factor ß• biochemistry and roles in embryogenesis, tissue repair and remodeling, and carcinogenesis. In: Recent Progress in Hormone Research: Proceedings of the 1987 Laurentian Hormone Conference. 2013. San Diego: Academic Press.

    Google Scholar 

  54. Shamloo A, Xu H, Heilshorn S. Mechanisms of vascular endothelial growth factor-induced pathfinding by endothelial sprouts in biomaterials. Tissue Eng Part A. 2012;18(3–4):320–30.

    Article  CAS  PubMed  Google Scholar 

  55. Giannobile WV, et al. Comparative effects of platelet-derived growth factor-BB and insulin-like growth factor-I, individually and in combination, on periodontal regeneration in Macaca fascicularis. J Periodontal Res. 1996;31(5):301–12.

    Article  CAS  PubMed  Google Scholar 

  56. Ghanaati S, et al. Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. J Oral Implantol. 2014;40(6):679–89.

    Article  PubMed  Google Scholar 

  57. Lekovic V, et al. Platelet-rich fibrin and bovine porous bone mineral vs. platelet-rich fibrin in the treatment of intrabony periodontal defects. J Periodontal Res. 2012;47(4):409–17.

    Article  CAS  PubMed  Google Scholar 

  58. Panda S, et al. Platelet rich fibrin and xenograft in treatment of intrabony defect. Contemp Clin Dent. 2014;5(4):550–4.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pradeep AR, et al. Comparative evaluation of autologous platelet-rich fibrin and platelet-rich plasma in the treatment of 3-wall intrabony defects in chronic periodontitis: a randomized controlled clinical trial. J Periodontol. 2012;83(12):1499–507.

    Article  CAS  PubMed  Google Scholar 

  60. Sharma A, Pradeep AR. Treatment of 3-wall intrabony defects in patients with chronic periodontitis with autologous platelet-rich fibrin: a randomized controlled clinical trial. J Periodontol. 2011;82(12):1705–12.

    Article  PubMed  Google Scholar 

  61. Kumar RV, Shubhashini N. Platelet rich fibrin: a new paradigm in periodontal regeneration. Cell Tissue Bank. 2013;14(3):453–63.

    Article  PubMed  CAS  Google Scholar 

  62. Soltan M, Rohrer MD, Prasad HS. Monocytes: super cells for bone regeneration. Implant Dent. 2012;21(1):13–20.

    Article  PubMed  Google Scholar 

  63. Sammartino G, et al. Prevention of hemorrhagic complications after dental extractions into open heart surgery patients under anticoagulant therapy: the use of leukocyte- and platelet-rich fibrin. J Oral Implantol. 2011;37(6):681–90.

    Article  PubMed  Google Scholar 

  64. Suttapreyasri S, Leepong N. Influence of platelet-rich fibrin on alveolar ridge preservation. J Craniofac Surg. 2013;24(4):1088–94.

    Article  PubMed  Google Scholar 

  65. Yelamali T, Saikrishna D. Role of platelet rich fibrin and platelet rich plasma in wound healing of extracted third molar sockets: a comparative study. J Maxillofac Oral Surg. 2015;14(2):410–6.

    Article  PubMed  Google Scholar 

  66. Anilkumar K, et al. Platelet-rich-fibrin: a novel root coverage approach. J Indian Soc Periodontol. 2009;13(1):50–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jankovic S, et al. Use of platelet-rich fibrin membrane following treatment of gingival recession: a randomized clinical trial. Int J Periodontics Restorative Dent. 2012;32(2):e41–50.

    PubMed  Google Scholar 

  68. Eren, G., et al., Cytokine (interleukin-1beta) and MMP levels in gingival crevicular fluid after use of platelet-rich fibrin or connective tissue graft in the treatment of localized gingival recessions. J Periodontal Res, 2015.

    Google Scholar 

  69. Jain V, et al. Role of platelet-rich-fibrin in enhancing palatal wound healing after free graft. Contemp Clin Dent. 2012;3(Suppl 2):S240–3.

    PubMed  PubMed Central  Google Scholar 

  70. Kulkarni MR, et al. Platelet-rich fibrin as an adjunct to palatal wound healing after harvesting a free gingival graft: a case series. J Indian Soc Periodontol. 2014;18(3):399–402.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Femminella B, et al. Clinical comparison of platelet-rich fibrin and a gelatin sponge in the management of palatal wounds after epithelialized free gingival graft harvest: a randomized clinical trial. J Periodontol. 2016;87(2):103–13.

    Article  PubMed  Google Scholar 

  72. Pathak H, et al. Treatment of oral mucosal lesions by scalpel excision and platelet-rich fibrin membrane grafting: a review of 26 sites. J Oral Maxillofac Surg. 2015;73(9):1865–74.

    Article  PubMed  Google Scholar 

  73. Ajwani H, et al. Comparative evaluation of platelet-rich fibrin biomaterial and open flap debridement in the treatment of two and three wall intrabony defects. J Int Oral Health. 2015;7(4):32–7.

    PubMed  PubMed Central  Google Scholar 

  74. di Lauro AE, et al. Soft tissue regeneration using leukocyte-platelet rich fibrin after exeresis of hyperplastic gingival lesions: two case reports. J Med Case Reports. 2015;9:252.

    Article  Google Scholar 

  75. Munoz F, et al. Use of leukocyte and platelet-rich fibrin (L-PRF) in periodontally accelerated osteogenic orthodontics (PAOO): clinical effects on edema and pain. J Clin Exp Dent. 2016;8(2):e119–24.

    PubMed  PubMed Central  Google Scholar 

  76. Danielsen P, et al. Effect of topical autologous platelet-rich fibrin versus no intervention on epithelialization of donor sites and meshed split-thickness skin autografts: a randomized clinical trial. Plast Reconstr Surg. 2008;122(5):1431–40.

    Article  CAS  PubMed  Google Scholar 

  77. O’Connell SM, et al. Autologous platelet-rich fibrin matrix as cell therapy in the healing of chronic lower-extremity ulcers. Wound Repair Regen. 2008;16(6):749–56.

    Article  PubMed  Google Scholar 

  78. Steenvoorde P, et al. Use of autologous platelet-rich fibrin on hard-to-heal wounds. J Wound Care. 2008;17(2):60–3.

    Article  CAS  PubMed  Google Scholar 

  79. Jorgensen B, et al. A pilot study to evaluate the safety and clinical performance of Leucopatch, an autologous, additive-free, platelet-rich fibrin for the treatment of recalcitrant chronic wounds. Int J Low Extrem Wounds. 2011;10(4):218–23.

    Article  PubMed  Google Scholar 

  80. Londahl M, et al. Use of an autologous leucocyte and platelet-rich fibrin patch on hard-to-heal DFUs: a pilot study. J Wound Care. 2015;24(4):172–4. 176-8.

    Article  CAS  PubMed  Google Scholar 

  81. Chignon-Sicard B, et al. Efficacy of leukocyte- and platelet-rich fibrin in wound healing: a randomized controlled clinical trial. Plast Reconstr Surg. 2012;130(6):819e–829.

    Article  CAS  PubMed  Google Scholar 

  82. Desai CB, et al. Use of platelet-rich fibrin over skin wounds: modified secondary intention healing. J Cutan Aesthet Surg. 2013;6(1):35–7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Danielsen PL, Agren MS, Jorgensen LN. Platelet-rich fibrin versus albumin in surgical wound repair: a randomized trial with paired design. Ann Surg. 2010;251(5):825–31.

    Article  PubMed  Google Scholar 

  84. Sclafani AP. Safety, efficacy, and utility of platelet-rich fibrin matrix in facial plastic surgery. Arch Facial Plast Surg. 2011;13(4):247–51.

    Article  PubMed  Google Scholar 

  85. Sclafani AP, McCormick SA. Induction of dermal collagenesis, angiogenesis, and adipogenesis in human skin by injection of platelet-rich fibrin matrix. Arch Facial Plast Surg. 2012;14(2):132–6.

    Article  PubMed  Google Scholar 

  86. Gorlero F, et al. New approach in vaginal prolapse repair: mini-invasive surgery associated with application of platelet-rich fibrin. Int Urogynecol J. 2012;23(6):715–22.

    Article  PubMed  Google Scholar 

  87. Soyer T, et al. Use of autologous platelet rich fibrin in urethracutaneous fistula repair: preliminary report. Int Wound J. 2013;10(3):345–7.

    Article  PubMed  Google Scholar 

  88. Guinot A, et al. Preliminary experience with the use of an autologous platelet-rich fibrin membrane for urethroplasty coverage in distal hypospadias surgery. J Pediatr Urol. 2014;10(2):300–5.

    Article  CAS  PubMed  Google Scholar 

  89. Braccini F, et al. Modern lipostructure: the use of platelet rich fibrin (PRF). Rev Laryngol Otol Rhinol (Bord). 2013;134(4–5):231–5.

    CAS  Google Scholar 

  90. Zumstein MA, et al. Increased vascularization during early healing after biologic augmentation in repair of chronic rotator cuff tears using autologous leukocyte- and platelet-rich fibrin (L-PRF): a prospective randomized controlled pilot trial. J Shoulder Elbow Surg. 2014;23(1):3–12.

    Article  PubMed  Google Scholar 

  91. Habesoglu M, et al. Platelet-rich fibrin plays a role on healing of acute-traumatic ear drum perforation. J Craniofac Surg. 2014;25(6):2056–8.

    Article  PubMed  Google Scholar 

  92. Girish Rao S, et al. Bone regeneration in extraction sockets with autologous platelet rich fibrin gel. J Maxillofac Oral Surg. 2013;12(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  93. Hauser F, et al. Clinical and histological evaluation of postextraction platelet-rich fibrin socket filling: a prospective randomized controlled study. Implant Dent. 2013;22(3):295–303.

    Article  PubMed  Google Scholar 

  94. Tajima N, et al. Evaluation of sinus floor augmentation with simultaneous implant placement using platelet-rich fibrin as sole grafting material. Int J Oral Maxillofac Implants. 2013;28(1):77–83.

    Article  PubMed  Google Scholar 

  95. Mazor Z, et al. Sinus floor augmentation with simultaneous implant placement using Choukroun’s platelet-rich fibrin as the sole grafting material: a radiologic and histologic study at 6 months. J Periodontol. 2009;80(12):2056–64.

    Article  PubMed  Google Scholar 

  96. Simonpieri A, et al. Simultaneous sinus-lift and implantation using microthreaded implants and leukocyte- and platelet-rich fibrin as sole grafting material: a six-year experience. Implant Dent. 2011;20(1):2–12.

    Article  PubMed  Google Scholar 

  97. Agarwal SK, et al. Patient-centered evaluation of microsurgical management of gingival recession using coronally advanced flap with platelet-rich fibrin or amnion membrane: a comparative analysis. Eur J Dent. 2016;10(1):121–33.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Aleksic Z, et al. The use of platelet-rich fibrin membrane in gingival recession treatment. Srp Arh Celok Lek. 2010;138(1–2):11–8.

    Article  PubMed  Google Scholar 

  99. Aroca S, et al. Clinical evaluation of a modified coronally advanced flap alone or in combination with a platelet-rich fibrin membrane for the treatment of adjacent multiple gingival recessions: a 6-month study. J Periodontol. 2009;80(2):244–52.

    Article  CAS  PubMed  Google Scholar 

  100. Dogan SB, et al. Concentrated growth factor in the treatment of adjacent multiple gingival recessions: a split-mouth randomized clinical trial. J Clin Periodontol. 2015;42(9):868–75.

    Article  CAS  PubMed  Google Scholar 

  101. Eren G, Atilla G. Platelet-rich fibrin in the treatment of localized gingival recessions: a split-mouth randomized clinical trial. Clin Oral Investig. 2014;18(8):1941–8.

    Article  PubMed  Google Scholar 

  102. Gupta S, et al. Clinical evaluation and comparison of the efficacy of coronally advanced flap alone and in combination with platelet rich fibrin membrane in the treatment of miller class I and II gingival recessions. Contemp Clin Dent. 2015;6(2):153–60.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jankovic S, et al. The coronally advanced flap in combination with platelet-rich fibrin (PRF) and enamel matrix derivative in the treatment of gingival recession: a comparative study. Eur J Esthet Dent. 2010;5(3):260–73.

    PubMed  Google Scholar 

  104. Keceli HG, et al. The adjunctive effect of platelet-rich fibrin to connective tissue graft in the treatment of buccal recession defects: results of a randomized parallel-group controlled trial. J Periodontol. 2015;86(11):1221–30.

    Article  PubMed  Google Scholar 

  105. Padma R, et al. A split mouth randomized controlled study to evaluate the adjunctive effect of platelet-rich fibrin to coronally advanced flap in Miller’s class-I and II recession defects. J Indian Soc Periodontol. 2013;17(5):631–6.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rajaram V, et al. Platelet rich fibrin in double lateral sliding bridge flap procedure for gingival recession coverage: an original study. J Indian Soc Periodontol. 2015;19(6):665–70.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Thamaraiselvan M, et al. Comparative clinical evaluation of coronally advanced flap with or without platelet rich fibrin membrane in the treatment of isolated gingival recession. J Indian Soc Periodontol. 2015;19(1):66–71.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tunaliota M, et al. Clinical evaluation of autologous platelet-rich fibrin in the treatment of multiple adjacent gingival recession defects: a 12-month study. Int J Periodontics Restorative Dent. 2015;35(1):105–14.

    Article  PubMed  Google Scholar 

  109. Agarwal A, Gupta ND, Jain A. Platelet rich fibrin combined with decalcified freeze-dried bone allograft for the treatment of human intrabony periodontal defects: a randomized split mouth clinical trial. Acta Odontol Scand. 2016;74(1):36–43.

    Article  PubMed  CAS  Google Scholar 

  110. Elgendy EA, Abo Shady TE. Clinical and radiographic evaluation of nanocrystalline hydroxyapatite with or without platelet-rich fibrin membrane in the treatment of periodontal intrabony defects. J Indian Soc Periodontol. 2015;19(1):61–5.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Joseph VR, Sam G, Amol NV. Clinical evaluation of autologous platelet rich fibrin in horizontal alveolar bony defects. J Clin Diagn Res. 2014;8(11):ZC43–7.

    Google Scholar 

  112. Panda S, et al. Adjunctive effect of autologus platelet-rich fibrin to barrier membrane in the treatment of periodontal intrabony defects. J Craniofac Surg. 2016;27(3):691–6.

    PubMed  Google Scholar 

  113. Pradeep AR, et al. Platelet-rich fibrin with 1% metformin for the treatment of intrabony defects in chronic periodontitis: a randomized controlled clinical trial. J Periodontol. 2015;86(6):729–37.

    Article  CAS  PubMed  Google Scholar 

  114. Shah M, et al. Comparative evaluation of platelet-rich fibrin with demineralized freeze-dried bone allograft in periodontal infrabony defects: a randomized controlled clinical study. J Indian Soc Periodontol. 2015;19(1):56–60.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Thorat M, Pradeep AR, Pallavi B. Clinical effect of autologous platelet-rich fibrin in the treatment of intra-bony defects: a controlled clinical trial. J Clin Periodontol. 2011;38(10):925–32.

    Article  CAS  PubMed  Google Scholar 

  116. Pradeep, A.R., et al., Platelet-rich fibrin combined with a porous hydroxyapatite graft for the treatment of three-wall intrabony defects in chronic periodontitis: a randomized controlled clinical trial. J Periodontol, 2012.

    Google Scholar 

  117. Chadwick JK, Mills MP, Mealey BL. Clinical and radiographic evaluation of demineralized freeze-dried bone allograft versus platelet-rich fibrin for the treatment of periodontal intrabony defects in humans. J Periodontol. 2016;1:12.

    Google Scholar 

  118. Sharma A, Pradeep AR. Autologous platelet-rich fibrin in the treatment of mandibular degree II furcation defects: a randomized clinical trial. J Periodontol. 2011;82(10):1396–403.

    Article  CAS  PubMed  Google Scholar 

  119. Bajaj, P., et al., Comparative evaluation of autologous platelet-rich fibrin and platelet-rich plasma in the treatment of mandibular degree II furcation defects: a randomized controlled clinical trial. J Periodontal Res, 2013.

    Google Scholar 

  120. Pradeep AR, et al. Rosuvastatin 1.2 mg in situ gel combined with 1:1 mixture of autologous platelet-rich fibrin and porous hydroxyapatite bone graft in surgical treatment of mandibular class II furcation defects: a randomized clinical control trial. J Periodontol. 2016;87(1):5–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Choukroun M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Choukroun, J., Aalam, A.A., Miron, R.J. (2017). Platelet Rich Fibrin “PRF” and Regenerative Medicine: ‘The Low-Speed Concept’. In: Tatullo, M. (eds) MSCs and Innovative Biomaterials in Dentistry. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-55645-1_2

Download citation

Publish with us

Policies and ethics