Skip to main content

Dental Pulp Stem Cells: What’s New?

  • Chapter
  • First Online:
MSCs and Innovative Biomaterials in Dentistry

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Since the discovery of dental pulp stem cells at the beginning of this century, there has been a rapid escalation of published reports describing the different stem/progenitor cells types derived from the oral cavity, the development of novel carrier biomaterials/scaffolds and bioengineering strategies for endodontic regenerative medicine. This chapter will discuss the most current developments utilizing dental pulp stem cells in regenerative dentistry, often employing multidisciplinary approaches. These encompass an understanding of the microenvironment of oral tissues, and highlight the differences between the types of tissues within the oral cavity. Identifying the appropriate bioactive molecules, such as growth factors, transcription factors, signalling molecules and enzymes has also been essential for the regenerative process. Furthermore, the mode of delivery of the dental pulp stem cells has been shown to be dependent on the structure and location of the damaged tissue being targeted. As such, a number of biomaterial used to generate injectable or solid scaffolds have been critically evaluated. The surface structure, extracellular matrix composition of the scaffolds used to deliver the cells, the biodegradability, porosity and release of specific bioactive molecules essential for the survival and maintenance of the dental pulp stem cells have been described. A number of proof-of-principle studies have focused on the efficacy, toxicity, proliferative, adhesive, migratory and differentiation capabilities of dental pulp stem cells within these scaffolds with in vitro, explant and in vivo regenerative experiments. Collectively these findings suggest that the bioengineering and delivery of tissue appropriate biomaterial, bioactive molecules and dental pulp stem cells for the repair or regeneration of the dentin-pulp complex is promising and progressing rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development. 1988;103(Suppl):155–69.

    PubMed  Google Scholar 

  2. Buchaille R, Couble ML, Magloire H, Bleicher F. A substractive PCR-based cDNA library from human odontoblast cells: identification of novel genes expressed in tooth forming cells. Matrix Biol. 2000;19:421–30.

    Article  CAS  PubMed  Google Scholar 

  3. Peters H, Balling R. Teeth. Where and how to make them. Trends Genet. 1999;15:59–65.

    Article  CAS  PubMed  Google Scholar 

  4. Thesleff I, Aberg T. Molecular regulation of tooth development. Bone. 1999;25:123–5.

    Article  CAS  PubMed  Google Scholar 

  5. Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet. 2004;5:499–508.

    Article  CAS  PubMed  Google Scholar 

  6. Baume LJ. The biology of pulp and dentine. A historic, terminologic-taxonomic, histologic-biochemical, embryonic and clinical survey. Monogr Oral Sci. 1980;8:1–220.

    Article  CAS  PubMed  Google Scholar 

  7. Butler WT, Ritchie HH, Bronckers AL. Extracellular matrix proteins of dentine. Ciba Found Symp. 1997;205:107–15. discussion 15–7

    CAS  PubMed  Google Scholar 

  8. Bartold PM, Shi S, Gronthos S. Stem cells and periodontal regeneration. Periodontology. 2006;40:164–72.

    Article  Google Scholar 

  9. Schuurs AH, Gruythuysen RJ, Wesselink PR. Pulp capping with adhesive resin-based composite vs calcium hydroxide: a review. Endod Dent Traumatol. 2000;16:240–50.

    Article  CAS  PubMed  Google Scholar 

  10. Pang YW, Feng J, Daltoe F, Fatscher R, Gentleman E, Gentleman MM, et al. Perivascular stem cells at the tip of mouse incisors regulate tissue regeneration. J Am Soc Bone Miner Res. 2016;31:514–23.

    Article  CAS  Google Scholar 

  11. Arthur A, Koblar S, Shi S, Gronthos S. Eph/ephrinB mediate dental pulp stem cell mobilization and function. J Dent Res. 2009;88:829–34.

    Article  CAS  PubMed  Google Scholar 

  12. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97:13625–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. El-Denshary ES, Rashed LA, Elhussiny M. Mesenchymal stromal cells versus betamethasone can dampen disease activity in the collagen arthritis mouse model. Clin Exp Med. 2014;14:285–95.

    Article  CAS  PubMed  Google Scholar 

  14. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003;18:696–704.

    Article  PubMed  Google Scholar 

  15. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100:5807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci. 2003;116:1827–35.

    Article  CAS  PubMed  Google Scholar 

  17. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81:531–5.

    Article  CAS  PubMed  Google Scholar 

  18. Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, et al. Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res. 2003;82:976–81.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao H, Feng J, Seidel K, Shi S, Klein O, Sharpe P, et al. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell. 2014;14:160–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, et al. Glial origin of mesenchymal stem cells in a tooth model system. Nature. 2014;513:551–4.

    Article  CAS  PubMed  Google Scholar 

  21. Abe S, Yamaguchi S, Watanabe A, Hamada K, Amagasa T. Hard tissue regeneration capacity of apical pulp derived cells (APDCs) from human tooth with immature apex. Biochem Biophys Res Commun. 2008;371:90–3.

    Article  CAS  PubMed  Google Scholar 

  22. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008;34:166–71.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res. 2005;8:191–9.

    Article  CAS  PubMed  Google Scholar 

  24. Menicanin D, Hynes K, Han J, Gronthos S, Bartold PM. Cementum and periodontal ligament regeneration. Adv Exp Med Biol. 2015;881:207–36.

    Article  CAS  PubMed  Google Scholar 

  25. Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell ResTher. 2010;1:5.

    Google Scholar 

  26. Tang R, Ding G. Swine dental pulp stem cells inhibit T-cell proliferation. Transplant Proc. 2011;43:3955–9.

    Article  CAS  PubMed  Google Scholar 

  27. Tomic S, Djokic J, Vasilijic S, Vucevic D, Todorovic V, Supic G, et al. Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor agonists. Stem Cells Dev. 2011;20:695–708.

    Article  CAS  PubMed  Google Scholar 

  28. Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S. Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol. 2009;219:667–76.

    Article  CAS  PubMed  Google Scholar 

  29. Eubanks EJ, Tarle SA, Kaigler D. Tooth storage, dental pulp stem cell isolation, and clinical scale expansion without animal serum. J Endod. 2014;40:652–7.

    Article  PubMed  Google Scholar 

  30. Kim BC, Bae H, Kwon IK, Lee EJ, Park JH, Khademhosseini A, et al. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2012;18:235–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med. 2015;9:1205–16.

    Article  PubMed  Google Scholar 

  32. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res. 2002;81:695–700.

    Article  CAS  PubMed  Google Scholar 

  33. Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, et al. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A. 2009;106:13475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiao L, Tsutsui T. Three-dimensional epithelial and mesenchymal cell co-cultures form early tooth epithelium invagination-like structures: expression patterns of relevant molecules. J Cell Biochem. 2012;113:1875–85.

    Article  CAS  PubMed  Google Scholar 

  35. Xiao L, Kumazawa Y, Okamura H. Cell death, cavitation and spontaneous multi-differentiation of dental pulp stem cells-derived spheroids in vitro: a journey to survival and organogenesis. Biol Cell. 2014;106:405–19.

    Article  CAS  PubMed  Google Scholar 

  36. Ortiz M, Rosales-Ibanez R, Pozos-Guillen A, De Bien C, ToyeD FH, et al. DPSC colonization of functionalized 3D textiles. J Biomed Mater Res B Appl Biomater. 2016; doi:10.1002/jbm.b.33609.

    PubMed  Google Scholar 

  37. Lobo SE, Glickman R, da Silva WN, Arinzeh TL, Kerkis I. Response of stem cells from different origins to biphasic calcium phosphate bioceramics. Cell Tissue Res. 2015;361:477–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kolind K, Kraft D, Boggild T, Duch M, Lovmand J, Pedersen FS, et al. Control of proliferation and osteogenic differentiation of human dental-pulp-derived stem cells by distinct surface structures. Acta Biomater. 2014;10:641–50.

    Article  CAS  PubMed  Google Scholar 

  39. Collart-Dutilleul PY, Panayotov I, Secret E, Cunin F, Gergely C, Cuisinier F, et al. Initial stem cell adhesion on porous silicon surface: molecular architecture of actin cytoskeleton and filopodial growth. Nanoscale Res Lett. 2014;9:564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Collart-Dutilleul PY, Secret E, Panayotov I, Deville de Periere D, Martin-Palma RJ, Torres-Costa V, et al. Adhesion and proliferation of human mesenchymal stem cells from dental pulp on porous silicon scaffolds. ACS Appl Mater Interfaces. 2014;6:1719–28.

    Article  CAS  PubMed  Google Scholar 

  41. Marrelli M, Falisi G, Apicella A, Apicella D, Amantea M, Cielo A, et al. Behaviour of dental pulp stem cells on different types of innovative mesoporous and nanoporous silicon scaffolds with different functionalizations of the surfaces. J Biol Regul Homeost Agents. 2015;29:991–7.

    CAS  PubMed  Google Scholar 

  42. Demarco FF, Casagrande L, Zhang Z, Dong Z, Tarquinio SB, Zeitlin BD, et al. Effects of morphogen and scaffold porogen on the differentiation of dental pulp stem cells. J Endod. 2010;36:1805–11.

    Article  PubMed  Google Scholar 

  43. Conde CM, Demarco FF, Casagrande L, Alcazar JC, Nor JE, Tarquinio SB. Influence of poly-l-lactic acid scaffold’s pore size on the proliferation and differentiation of dental pulp stem cells. Braz Dent J. 2015;26:93–8.

    Article  PubMed  Google Scholar 

  44. Guan Z, Shi S, Samruajbenjakun B, Kamolmatyakul S. Fabrication, characterization and cell cultures on a novel chitosan scaffold. Biomed Mater Eng. 2015;25:121–35.

    PubMed  Google Scholar 

  45. Kanafi MM, Ramesh A, Gupta PK, Bhonde RR. Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering. Int Endod J. 2014;47:687–97.

    Article  CAS  PubMed  Google Scholar 

  46. Rosa V, Xie H, Dubey N, Madanagopal TT, Rajan SS, Morin JL, et al. Graphene oxide-based substrate: physical and surface characterization, cytocompatibility and differentiation potential of dental pulp stem cells. Dent Mater. 2016;32(8):1019–25.

    Article  CAS  PubMed  Google Scholar 

  47. Paduano F, Marrelli M, White LJ, Shakesheff KM, Tatullo M. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I. PLoS One. 2016;11:e0148225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Liu G, Xu G, Gao Z, Liu Z, Xu J, Wang J, et al. Demineralized dentin matrix induces odontoblastic differentiation of dental pulp stem cells. Cells Tissues Organs. 2016;201:65–76.

    Article  PubMed  CAS  Google Scholar 

  49. Qu T, Jing J, Jiang Y, Taylor RJ, Feng JQ, Geiger B, et al. Magnesium-containing nanostructured hybrid scaffolds for enhanced dentin regeneration. Tissue Eng Part A. 2014;20:2422–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bakopoulou A, Papachristou E, Bousnaki M, Hadjichristou C, Kontonasaki E, Theocharidou A, et al. Human treated dentin matrices combined with Zn-doped, Mg-based bioceramic scaffolds and human dental pulp stem cells towards targeted dentin regeneration. Dent Mater. 2016;32(8):e159–75.

    Article  CAS  PubMed  Google Scholar 

  51. Chou MY, Kao CT, Hung CJ, Huang TH, Huang SC, Shie MY, et al. Role of the P38 pathway in calcium silicate cement-induced cell viability and angiogenesis-related proteins of human dental pulp cell in vitro. J Endod. 2014;40:818–24.

    Article  PubMed  Google Scholar 

  52. Chen YW, Ho CC, Huang TH, Hsu TT, Shie MY. The ionic products from mineral trioxide aggregate-induced odontogenic differentiation of dental pulp cells via activation of the Wnt/beta-catenin signaling pathway. J Endod. 2016;42:1062–9.

    Article  PubMed  Google Scholar 

  53. Wang S, Hu Q, Gao X, Dong Y. Characteristics and effects on dental pulp cells of a polycaprolactone/submicron bioactive glass composite scaffold. J Endod. 2016;42:1070–5.

    Article  PubMed  Google Scholar 

  54. Galler KM, Widbiller M, Buchalla W, Eidt A, Hiller KA, Hoffer PC, et al. EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells. Int Endod J. 2016;49:581–90.

    Article  CAS  PubMed  Google Scholar 

  55. Galler KM, D’Souza RN, Federlin M, Cavender AC, Hartgerink JD, Hecker S, et al. Dentin conditioning codetermines cell fate in regenerative endodontics. J Endod. 2011;37:1536–41.

    Article  PubMed  Google Scholar 

  56. Cavalcanti BN, Zeitlin BD, Nor JE. A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dent Mater. 2013;29:97–102.

    Article  CAS  PubMed  Google Scholar 

  57. Diniz IM, Chen C, Xu X, Ansari S, Zadeh HH, Marques MM, et al. Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. J Mater Sci Mater Med. 2015;26:153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP, Zhang C. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A. 2015;21:550–63.

    Article  CAS  PubMed  Google Scholar 

  59. Dissanayaka WL, Zhu L, Hargreaves KM, Jin L, Zhang C. Scaffold-free prevascularized microtissue spheroids for pulp regeneration. J Dent Res. 2014;93:1296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dissanayaka WL, Zhu L, Hargreaves KM, Jin L, Zhang C. In vitro analysis of scaffold-free prevascularized microtissue spheroids containing human dental pulp cells and endothelial cells. J Endod. 2015;41:663–70.

    Article  PubMed  Google Scholar 

  61. Ferroni L, Gardin C, Sivolella S, Brunello G, Berengo M, Piattelli A, et al. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue. Int J Mol Sci. 2015;16:4666–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosa V, Zhang Z, Grande RH, Nor JE. Dental pulp tissue engineering in full-length human root canals. J Dent Res. 2013;92:970–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jones TD, Kefi A, Sun S, Cho M, Alapati SB. An optimized injectable hydrogel scaffold supports human dental pulp stem cell viability and spreading. Adv Med. 2016;2016:7363579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kuang R, Zhang Z, Jin X, Hu J, Shi S, Ni L, et al. Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomater. 2016;33:225–34.

    Article  CAS  PubMed  Google Scholar 

  65. Jia W, Zhao Y, Yang J, Wang W, Wang X, Ling L, et al. Simvastatin promotes dental pulp stem cell-induced coronal pulp regeneration in pulpotomized teeth. J Endod. 2016;42:1049–54.

    Article  PubMed  Google Scholar 

  66. Ruparel NB, Teixeira FB, Ferraz CC, Diogenes A. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J Endod. 2012;38:1372–5.

    Article  PubMed  Google Scholar 

  67. Chuensombat S, Khemaleelakul S, Chattipakorn S, Srisuwan T. Cytotoxic effects and antibacterial efficacy of a 3-antibiotic combination: an in vitro study. J Endod. 2013;39:813–9.

    Article  PubMed  Google Scholar 

  68. Yadlapati M, Souza LC, Dorn S, Garlet GP, Letra A, Silva RM. Deleterious effect of triple antibiotic paste on human periodontal ligament fibroblasts. Int Endod J. 2014;47:769–75.

    Article  CAS  PubMed  Google Scholar 

  69. Alghilan MA, Windsor LJ, Palasuk J, Yassen GH. Attachment and proliferation of dental pulp stem cells on dentine treated with different regenerative endodontic protocols. Int Endod J. 2016; doi:10.1111/iej.12669.

    PubMed  Google Scholar 

  70. Martin DE, De Almeida JF, Henry MA, Khaing ZZ, Schmidt CE, Teixeira FB, et al. Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation. J Endod. 2014;40:51–5.

    Article  PubMed  Google Scholar 

  71. Trevino EG, Patwardhan AN, Henry MA, Perry G, Dybdal-Hargreaves N, Hargreaves KM, et al. Effect of irrigants on the survival of human stem cells of the apical papilla in a platelet-rich plasma scaffold in human root tips. J Endod. 2011;37:1109–15.

    Article  PubMed  Google Scholar 

  72. Kamocki K, Nor JE, Bottino MC. Dental pulp stem cell responses to novel antibiotic-containing scaffolds for regenerative endodontics. Int Endod J. 2015;48:1147–56.

    Article  CAS  PubMed  Google Scholar 

  73. Dissanayaka WL, Zhan X, Zhang C, Hargreaves KM, Jin L, Tong EH. Coculture of dental pulp stem cells with endothelial cells enhances osteo−/odontogenic and angiogenic potential in vitro. J Endod. 2012;38:454–63.

    Article  PubMed  Google Scholar 

  74. Chen YJ, Zhao YH, Zhao YJ, Liu NX, Lv X, Li Q, et al. Potential dental pulp revascularization and odonto-/osteogenic capacity of a novel transplant combined with dental pulp stem cells and platelet-rich fibrin. Cell Tissue Res. 2015;361:439–55.

    Article  CAS  PubMed  Google Scholar 

  75. Janebodin K, Zeng Y, Buranaphatthana W, Ieronimakis N, Reyes M. VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells. J Dent Res. 2013;92:524–31.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang Z, Nor F, Oh M, Cucco C, Shi S, Nor JE. Wnt/beta-catenin signaling determines the vasculogenic fate of postnatal mesenchymal stem cells. Stem Cells. 2016;34:1576–87.

    Article  CAS  PubMed  Google Scholar 

  77. Yang JW, Zhang YF, Wan CY, Sun ZY, Nie S, Jian SJ, et al. Autophagy in SDF-1alpha-mediated DPSC migration and pulp regeneration. Biomaterials. 2015;44:11–23.

    Article  CAS  PubMed  Google Scholar 

  78. Arthur A, Shi S, Zannettino AC, Fujii N, Gronthos S, Koblar SA. Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells. 2009;27:2229–37.

    Article  CAS  PubMed  Google Scholar 

  79. Psaltis PJ, Paton S, See F, Arthur A, Martin S, Itescu S, et al. Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. J Cell Physiol. 2010;223:530–40.

    CAS  PubMed  Google Scholar 

  80. Zhang W, Zhang Z, Chen S, Macri L, Kohn J, Yelick PC. Mandibular jaw bone regeneration using human dental cell-seeded tyrosine-derived polycarbonate scaffolds. Tissue Eng Part A. 2016;22(13-14):985–93.

    Article  CAS  PubMed  Google Scholar 

  81. Lei M, Li K, Li B, Gao LN, Chen FM, Jin Y. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials. 2014;35:6332–43.

    Article  CAS  PubMed  Google Scholar 

  82. Iohara K, Murakami M, Nakata K, Nakashima M. Age-dependent decline in dental pulp regeneration after pulpectomy in dogs. Exp Gerontol. 2014;52:39–45.

    Article  PubMed  Google Scholar 

  83. Murakami M, Horibe H, Iohara K, Hayashi Y, Osako Y, Takei Y, et al. The use of granulocyte-colony stimulating factor induced mobilization for isolation of dental pulp stem cells with high regenerative potential. Biomaterials. 2013;34:9036–47.

    Article  CAS  PubMed  Google Scholar 

  84. Iohara K, Murakami M, Takeuchi N, Osako Y, Ito M, Ishizaka R, et al. A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl Med. 2013;2:521–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Volponi AA, Gentleman E, Fatscher R, Pang YW, Gentleman MM, Sharpe PT. Composition of mineral produced by dental mesenchymal stem cells. J Dent Res. 2015;94:1568–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chun SY, Lee HJ, Choi YA, Kim KM, Baek SH, Park HS, et al. Analysis of the soluble human tooth proteome and its ability to induce dentin/tooth regeneration. Tissue Eng Part A. 2011;17:181–91.

    Article  CAS  PubMed  Google Scholar 

  87. Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A. 2014;20:1342–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Qu T, Jing J, Ren Y, Ma C, Feng JQ, Yu Q, et al. Complete pulpodentin complex regeneration by modulating the stiffness of biomimetic matrix. Acta Biomater. 2015;16:60–70.

    Article  CAS  PubMed  Google Scholar 

  89. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 2006;1:e79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wang S, Liu Y, Fang D, Shi S. The miniature pig: a useful large animal model for dental and orofacial research. Oral Dis. 2007;13:530–7.

    Article  CAS  PubMed  Google Scholar 

  91. Wei F, Song T, Ding G, Xu J, Liu Y, Liu D, et al. Functional tooth restoration by allogeneic mesenchymal stem cell-based bio-root regeneration in swine. Stem Cells Dev. 2013;22:1752–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gao ZH, Hu L, Liu GL, Wei FL, Liu Y, Liu ZH, et al. Bio-root and implant-based restoration as a tooth replacement alternative. J Dent Res. 2016;95:642–9.

    Article  CAS  PubMed  Google Scholar 

  93. Luo X, Yang B, Sheng L, Chen J, Li H, Xie L, et al. CAD based design sensitivity analysis and shape optimization of scaffolds for bio-root regeneration in swine. Biomaterials. 2015;57:59–72.

    Article  CAS  PubMed  Google Scholar 

  94. Tassin M, Bonte E, Loison-Robert LS, Nassif A, Berbar T, Le Goff S, et al. Effects of high-temperature-pressure polymerized resin-infiltrated ceramic networks on oral stem cells. PLoS One. 2016;11:e0155450.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Chen Y, Zheng YL, Qiu DB, Sun YP, Kuang SJ, Xu Y, et al. An extracellular matrix culture system for induced pluripotent stem cells derived from human dental pulp cells. Eur Rev Med Pharmacol Sci. 2015;19:4035–46.

    CAS  PubMed  Google Scholar 

  96. Ishiy FA, Fanganiello RD, Griesi-Oliveira K, Suzuki AM, Kobayashi GS, Morales AG, et al. Improvement of in vitro osteogenic potential through differentiation of induced pluripotent stem cells from human exfoliated dental tissue towards mesenchymal-like stem cells. Stem Cells Int. 2015;2015:249098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Takeda-Kawaguchi T, Sugiyama K, Chikusa S, Iida K, Aoki H, Tamaoki N, et al. Derivation of iPSCs after culture of human dental pulp cells under defined conditions. PLoS One. 2014;9:e115392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Tomokiyo A, Hynes K, Ng J, Menicanin D, Camp E, Arthur A, et al. Generation of neural crest-like cells from human periodontal ligament cell-derived induced pluripotent stem cells. J Cell Physiol. 2016;232(2):402–16.

    Article  PubMed  CAS  Google Scholar 

  99. Okawa H, Kayashima H, Sasaki J, Miura J, Kamano Y, Kosaka Y, et al. Scaffold-free fabrication of osteoinductive cellular constructs using mouse gingiva-derived induced pluripotent stem cells. Stem Cells Int. 2016;2016:6240794.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wu Q, Yang B, Hu K, Cao C, Man Y, Wang P. Deriving osteogenic cells from induced pluripotent stem cells for bone tissue engineering. Tissue Eng Part B Rev. 2017;23(1):1–8.

    Article  PubMed  Google Scholar 

  101. Hynes K, Menicanin D, Gronthos S, Bartold MP. Differentiation of iPSC to mesenchymal stem-like cells and their characterization. Methods Mol Biol. 2016;1357:353–74.

    Article  CAS  PubMed  Google Scholar 

  102. Ng J, Hynes K, White G, Sivanathan KN, Vandyke K, Bartold PM, et al. Immunomodulatory properties of induced pluripotent stem cell-derived mesenchymal cells. J Cell Biochem. 2016;117(12):2844.

    Article  CAS  PubMed  Google Scholar 

  103. Hynes K, Menichanin D, Bright R, Ivanovski S, Hutmacher DW, Gronthos S, et al. Induced pluripotent stem cells: a new frontier for stem cells in dentistry. J Dent Res. 2015;94:1508–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan Gronthos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Arthur, A., Shi, S., Gronthos, S. (2017). Dental Pulp Stem Cells: What’s New?. In: Tatullo, M. (eds) MSCs and Innovative Biomaterials in Dentistry. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-55645-1_1

Download citation

Publish with us

Policies and ethics