Skip to main content

Bioeconomy: Multidimensional Impacts and Challenges

  • Chapter
  • First Online:
Book cover A Sustainable Bioeconomy

Abstract

For decades, the reliance on fossil resources for the production of fuels, chemicals, and materials has generated unsustainable economic models which have created complicated economic, environmental and geopolitical circumstances around the world. Hence, in order to become sustainable economic model, bioeconomy has to deal with those challenges, as well as the important social factor related to issues such as accentuated disparities, population growth, and mass migration. During the current transition phase towards sustainability, bioeconomy is affected by various factors, notably the availability of biomass and the development or acquisition of biorefining technologies. Once implemented on the ground, bioeconomy starts to impact various aspects related to sustainable development, the environment, and societies. Simultaneously, it starts to face new sets of challenges mainly related to serious agricultural, industrial, environmental, and social issues.

Thus, in the present chapter, the impacts of bioeconomy and the prospects of its worldwide implementation are thoroughly discussed from a multidimensional outlook including industrial, environmental, social, and geopolitical perspectives. This includes the need for a continuous monitoring of the sustainability of bioproducts and biorefineries via various metrics, as well as the assessment of key environmental and social factors such as greenhouse gas emissions, land-use change, biodiversity, employment, food security, and the dangerous, yet somehow underestimated, problem of corruption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McLaren JS. Crop biotechnology provides an opportunity to develop a sustainable future. Trends Biotechnol. 2005;23:339–42.

    Article  CAS  Google Scholar 

  2. Smil V. Energy in the twentieth century: resources, conversions, costs, uses, and consequences. Annu Rev Energy Environ. 2000;25:21–51.

    Article  Google Scholar 

  3. Ortega-Argilés R. The transatlantic productivity gap: a survey of the main causes. J Econ Surv. 2012;26:395–419.

    Article  Google Scholar 

  4. Black R, Adger WN, Arnell NW, Dercon S, Geddes A, Thomas D. The effect of environmental change on human migration. Glob Environ Chang. 2011;21:S3–11.

    Article  Google Scholar 

  5. Toth G, Szigeti C. The historical ecological footprint: from over-population to over-consumption. Ecol Indic. 2016;60:283–91.

    Article  Google Scholar 

  6. US Energy Information Administration. The International Energy Outlook 2016 (IEO2016). Chapter 1 – World energy demand and economic outlook. http://www.eia.gov/outlooks/ieo/pdf/0484%282016%29.pdf. Full report published 11 May 2016.

  7. Parajuli R, Dalgaard T, Jørgensen U, et al. Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renew Sustain Energy Rev. 2015;43:244–63.

    Article  CAS  Google Scholar 

  8. Marris E. Sugar cane and ethanol: drink the best and drive the rest. Nature. 2006;444:670–2.

    Article  CAS  Google Scholar 

  9. Polack R, Wood S, Bradley E. Fossil fuels and food security: analysis and recommendations for community organizers. J Community Prac. 2008;16:359–75.

    Article  Google Scholar 

  10. Mohr SH, Evans GM. Forecasting coal production until 2100. Fuel. 2009;88:2059–67.

    Article  CAS  Google Scholar 

  11. Pirages D. Sustainability as an evolving process. Futures. 1994;26:197–205.

    Article  Google Scholar 

  12. Mebratu D. Sustainability and sustainable development: historical and conceptual review. Environ Impact Assess Rev. 1998;18:493–520.

    Article  Google Scholar 

  13. United Nations (UN). Sustainable development goals – 17 goals to transform our world. http://www.un.org/sustainabledevelopment/sustainable-development-goals/

  14. Anand M. Innovation and sustainable development: a bioeconomic perspective. Brief for global sustainable development report, GSDR. 2016. https://sustainabledevelopment.un.org/content/documents/982044_Anand_Innovation%20and%20Sustainable%20Development_A%20Bioeconomic%20Perspective.pdf

  15. United Nations’ Department of Economic and Social Affairs. World economic and social survey 2013 – sustainable development challenges. United Nations publication. New York. 2013. https://sustainabledevelopment.un.org/content/documents/2843WESS2013.pdf

  16. Parada MP, Osseweijer P, Duque JAP. Sustainable biorefineries, an analysis of practices for incorporating sustainability in biorefinery design. Ind Crops Prod. doi:10.1016/j.indcrop.2016.08.052.

  17. Kemp R, Martens P. Sustainable development: how to manage something that is subjective and never can be achieved? Sustain Sci Pract Policy. 2007;3:5–14.

    Google Scholar 

  18. de Vries BJM, Petersen AC. Conceptualizing sustainable development: an assessment methodology connecting values, knowledge, worldviews and scenarios. Ecol Econ. 2009;68:1006–19.

    Article  Google Scholar 

  19. Van Opstal M, Hugé J. Knowledge for sustainable development: a worldviews perspective. Environ Dev Sustain. 2013;15:687–709.

    Article  Google Scholar 

  20. Janeiro L, Patel KM. Choosing sustainable technologies. Implications of the underlying sustainability paradigm in the decision-making process. J Clean Prod. 2015;105:438–46.

    Article  Google Scholar 

  21. Lotz LAP, Van De Wiel CCM, Smulders MJM. Genetically modified crops and sustainable agriculture: a proposed way forward in the societal debate. NJAS Wagening J Life Sci. 2014;70:95–8.

    Article  Google Scholar 

  22. Hedlund-de WA. Rethinking sustainable development: considering how different worldviews envision “development” and “quality of life”. Sustainability. 2014;6:8310–28.

    Article  Google Scholar 

  23. Robertson GP, Dale VH, Doering OC, et al. Sustainable biofuels reflux. Science. 2008;322:49–50.

    Article  CAS  Google Scholar 

  24. Directive 2009/28/EC of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. 2009.

    Google Scholar 

  25. European biofuels technology platform (EBTP). Biofuels and sustainability issues. http://biofuelstp.eu/sustainability.html. Updated 9 Sep 2016.

  26. Lane J. EU reshapes its biofuels policy. 2015. http://www.biofuelsdigest.com/bdigest/2015/04/16/eu-reshapes-its-biofuels-policy/. Published 16 Apr 2015.

  27. Harrison P. Special report: Europe finds politics and biofuels don’t mix. Reuters. 2010. http://www.reuters.com/article/idUSTRE6641FD20100705. Published 5 July 2010.

  28. Banse M, van Meijl H, Tabeau A, Woltjer G. Will EU biofuel policies affect global agricultural markets? Eur J Agric Econ. 2008;35:117–41.

    Article  Google Scholar 

  29. Gitz V, Ciais P. Amplifying effects of land-use change on future atmospheric CO2 levels. Glob Biogeochem Cycles. 2003;17:1024.

    Article  CAS  Google Scholar 

  30. European Commission – Energy. Land use change. 2016. https://ec.europa.eu/energy/en/topics/renewable-energy/biofuels/land-use-change. Updated 12 Dec 2016.

  31. Raghu S, Anderson RC, Daehler CC, et al. Adding biofuels to the invasive species fire? Science. 2006;313:1742.

    Article  CAS  Google Scholar 

  32. Barney JN, DiTomaso JM. Nonnative species and bioenergy: are we cultivating the next invader. Bioscience. 2008;58:64–70.

    Article  Google Scholar 

  33. Davis AS, Cousens RD, Hill J, Mack RN, Simberloff D, Raghu S. Screening bioenergy feedstock crops to mitigate invasion risk. Front Ecol Environ. 2010;8:533–9.

    Article  Google Scholar 

  34. Sheppard AW, Gillespie I, Hirsch M, Begley C. Biosecurity and sustainability within the growing global bioeconomy. Curr Opin Environ Sustain. 2011;3:4–10.

    Article  Google Scholar 

  35. International Energy Agency (IEA). IEA bioenergy Task 42 on biorefineries. Biorefining in a future bioeconomy. http://www.ieabioenergy.com/task/biorefining-sustainable-processing-of-biomass-into-a-spectrum-of-marketable-biobased-products-and-bioenergy/

  36. Roseland M. Sustainable community development: integrating environmental, economic, and social objectives. Prog Plan. 2000;54:73–132.

    Article  Google Scholar 

  37. Gomes CP. Computational sustainability: computational methods for a sustainable environment, economy, and society. Bridge. 2009;39:5–13.

    Google Scholar 

  38. Pfau S, Hagens J, Dankbaar B, Smits A. Visions of sustainability in bioeconomy research. Sustainability. 2014;6:1222–49.

    Article  Google Scholar 

  39. Demirbas A. Biorefineries: current activities and future developments. Energy Convers Manag. 2009;50:2782–801.

    Article  CAS  Google Scholar 

  40. Cambero C, Sowlati T. Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – a review of literature. Renew Sust Energy Rev. 2014;36:62–73.

    Article  Google Scholar 

  41. Yaakob Z, Mohammad M, Alherbawi M, Alam Z, Sopian K. Overview of the production of biodiesel from waste cooking oil. Renew Sust Energy Rev. 2013;18:184–93.

    Article  CAS  Google Scholar 

  42. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.

    Article  CAS  Google Scholar 

  43. US Department of Energy, Office of Energy Efficiency & Renewable Energy. Biodiesel. 2016. http://www.fueleconomy.gov/feg/biodiesel.shtml

  44. Despotovic D, Cvetanovic S, Nedic V, Despotovic M. Economic, social and environmental dimension of sustainable competitiveness of European countries. J Environ Plan Manag. 2016;59:1656–78.

    Article  Google Scholar 

  45. Fermeglia M, Longo G, Toma L. Computer aided design for sustainable industrial processes: specific tools and applications. AIChE J. 2009;55:1065–78.

    Article  CAS  Google Scholar 

  46. Mansoornejad B, Pistikopoulos EN, Stuart P. Metrics for evaluating the forest biorefinery supply chain performance. Comput Chem Eng. 2013;54:125–39.

    Article  CAS  Google Scholar 

  47. Sacramento-Rivero JC. A methodology for evaluating the sustainability of biorefineries: framework and indicators. Biofuels Bioprod Biorefin. 2012;6:32–44.

    Article  CAS  Google Scholar 

  48. Ojeda K, Avila O, Suarez J, Kafarov V. Evaluation of technological alternatives for process integration of sugarcane bagasse for sustainable biofuels production-part 1. Chem Eng Res Des. 2011;89:270–9.

    Article  CAS  Google Scholar 

  49. Sacramento-Rivero JC, Navarro-Pineda F, Vilchiz-Bravo LE. Evaluating the sustainability of biorefineries at the conceptual design stage. Chem Eng Res Design. 2016;107:167–80.

    Article  CAS  Google Scholar 

  50. Pérez ATE, Camargo M, Rincón PCN, Marchant MA. Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: a bibliographic analysis. Renew Sust Energy Rev. 2017;69:350–9.

    Article  Google Scholar 

  51. Schaidle JA, Moline CJ, Savage PE. Biorefinery sustainability assessment. Environ Prog Sustain Energy. 2011;30:743–53.

    Article  CAS  Google Scholar 

  52. Wright M, Brown R. Comparative economics of biorefineries based on the biochemical and thermochemical platform. Biofuels Bioprod Biorefin. 2007;1:49–56.

    Article  CAS  Google Scholar 

  53. Rincón LE, Valencia MJ, Hernández V, et al. Optimization of the Colombian biodiesel supply chain from oil palm crop based on techno-economical and environmental criteria. Energy Econ. 2015;47:154–67.

    Article  Google Scholar 

  54. You F, Tao L, Graziano DJ, Snyder SW. Optimal design of sustainable cellulosic biofuel supply chains: multiobjective optimization coupled with life cycle assessment and input–output analysis. AIChE J. 2012;58:1157–80.

    Article  CAS  Google Scholar 

  55. Sander K, Murthy GS. Life cycle analysis of algae biodiesel. Int J Life Cycle Assess. 2010;15:704–14.

    Article  CAS  Google Scholar 

  56. Kloepffer W. Life cycle sustainability assessment of products. Int J Life Cycle Assess. 2008;13:89–94.

    Article  Google Scholar 

  57. Tabone MD, Cregg JJ, Beckman EJ, Landis AE. Sustainability metrics: life cycle assessment and green design in polymers. Environ Sci Technol. 2010;44:8264–9.

    Article  CAS  Google Scholar 

  58. Tanzil D, Beloff BR. Assessing impacts: overview on sustainability indicators and metrics. Environ Qual Manag. 2006;15:41–56.

    Article  Google Scholar 

  59. Ruiz-Mercado GJ, Smith RL, Gonzalez MA. Sustainability indicators for chemical processes: I. Taxonomy. Ind Eng Chem Res. 2012;51:2309–28.

    Article  CAS  Google Scholar 

  60. Bare JC. Life cycle impact assessment research developments and needs. Clean Technol Environ Policy. 2010;12:341–51.

    Article  Google Scholar 

  61. Thiede S, Seow Y, Andersson J, Johansson B. Environmental aspects in manufacturing system modelling and simulation – state of the art and research perspectives. CIRP J Manuf Sci Technol. 2013;6:78–87.

    Article  Google Scholar 

  62. Nanda S, Azargohar R, Dalai AK, Kozinski JA. An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew Sust Energy Rev. 2015;50:925–41.

    Article  CAS  Google Scholar 

  63. Simpson T, Sharpley A, Howarth R, Paerl H, Mankin K. The new gold rush: fueling ethanol production while protecting water quality. J Environ Qual. 2008;37:318–24.

    Article  CAS  Google Scholar 

  64. Mu J, Zhang G, MacLachlan DL. Social competency and new product development performance. IEEE Trans Eng Manag. 2011;58:363–76.

    Article  Google Scholar 

  65. Varble DL. Social and environmental considerations in new product development. J Mark. 1972;36:11–5.

    Article  Google Scholar 

  66. Gmelin H, Seuring S. Determinants of a sustainable new product development. J Clean Prod. 2014;69:1–9.

    Article  Google Scholar 

  67. Simon M, Poole S, Sweatman A, Evans S, Bhamra T, McAloone T. Environmental priorities in strategic product development. Bus Strateg Environ. 2000;9:367–77.

    Article  Google Scholar 

  68. Aguilera RV, Rupp DE, Williams CA. Putting the S back in corporate social responsibility: a multilevel theory of social change in organizations. Acad Manag Rev. 2007;32:836–63.

    Article  Google Scholar 

  69. Fleurbaey M. On sustainability and social welfare. J Environ Econ Manag. 2015;71:34–53.

    Article  Google Scholar 

  70. Martinet V. A characterization of sustainability with indicators. J Environ Econ Manag. 2011;61:183–97.

    Article  Google Scholar 

  71. Dempsey N, Bramley G, Power S, Brown C. The social dimension of sustainable development: defining urban social sustainability. Sustain Dev. 2011;19:289–300.

    Article  Google Scholar 

  72. Bautista S, Narvaez P, Camargo M, Chery O, Morel L. Biodiesel-TBL+: a new hierarchical sustainability assessment framework of PC&I for biodiesel production – part I. Ecol Indic. 2016;60:84–107.

    Article  Google Scholar 

  73. Ataei ME, Asr T, Khalokakai R, Ghanbari K, Mohammadi MRT. Semi-quantitative environmental impact assessment and sustainability level determination of coal mining using a mathematical model. J Min Environ. 2016;7:185–93.

    Google Scholar 

  74. Wu RQ, Yang D, Chen JQ. Social life cycle assessment revisited. Sustainability. 2014;6:4200–26.

    Article  Google Scholar 

  75. Bakshi BR, Fiksel J. The quest for sustainability: challenges for process systems engineering. AIChE J. 2003;49:1350–8.

    Article  CAS  Google Scholar 

  76. Rosegrant MW, Ringler C, Zhu T, Tokgoz S, Bhandary P. Water and food in the bioeconomy: challenges and opportunities for development. Agric Econ. 2013;44:139–50.

    Article  Google Scholar 

  77. Lewandowski I. Securing a sustainable biomass supply in a growing bioeconomy. Glob Food Secur. 2015;6:34–42.

    Article  Google Scholar 

  78. Scarlat N, Dallemand JF, Monforti-Ferrario F, Nita V. The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ Dev. 2015;15:3–34.

    Article  Google Scholar 

  79. Dong XB, Yu BH, Brown MT, et al. Environmental and economic consequences of the overexploitation of natural capital and ecosystem services in Xilinguole league. China Energy Policy. 2014;67:767–80.

    Article  Google Scholar 

  80. Aragao LEOC, Poulter B, Barlow JB, et al. Environmental change and the carbon balance of Amazonian forests. Biol Rev. 2014;89:913–31.

    Article  Google Scholar 

  81. Nita V, Benini L, Ciupagea C, Kavalov B, Pelletier N. Bio-economy and sustainability: a potential contribution to the bio-economy observatory. European Commission Joint Research Centre Institute for Environment and Sustainability. Report EUR 25743 EN. 2013.

    Google Scholar 

  82. Gerssen-Gondelach SJ, Saygin D, Wicke B, et al. Competing uses of biomass – assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renew Sust Energy Rev. 2014;40:964–98.

    Article  CAS  Google Scholar 

  83. Brunori G. Biomass, biovalue and sustainability: some thoughts on the definition of the bioeconomy. EuroChoices. 2013;12:48–52.

    Article  Google Scholar 

  84. Azapagic A. Sustainability considerations for integrated biorefineries. Trends Biotechnol. 2014;32:1–4.

    Article  CAS  Google Scholar 

  85. Tilman D, Hill J, Lehman C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science. 2006;314:1598–600.

    Article  CAS  Google Scholar 

  86. Daioglou V, Wicke B, Faaij APC, van Vuuren DP. Competing uses of biomass for energy and chemicals: implications for long-term global CO2 mitigation potential. GCB Bioenergy. 2015;7:1321–34.

    Article  CAS  Google Scholar 

  87. Environment and climate change Canada. National inventory report 1990–2014. Greenhouse gas sources and sinks in Canada. 2016. https://www.ec.gc.ca/ges-ghg/662F9C56-B4E4-478B-97D4-BAABE1E6E2E7/2016_NIR_Executive_Summary_en.pdf

  88. Janzen HH, Angers DA, Boehm M, et al. A proposed approach to estimate and reduce net greenhouse gas emissions from whole farms. Can J Soil Sci. 2006;86:401–18.

    Article  CAS  Google Scholar 

  89. Klein KK, LeRoy DG The biofuels frenzy: what’s in it for Canadian agriculture? Green paper prepared for the Alberta Institute of Agrologists. Annual Conference of Alberta Institute of Agrologists. Banf, Alberta. 2007.

    Google Scholar 

  90. Dyer JA, Vergé XPC, Desjardins RL, Worth DE, McConkey BG. The impact of increased biodiesel production on the greenhouse gas emissions from field crops in Canada. Energy Sustain Dev. 2010;14:73–82.

    Article  CAS  Google Scholar 

  91. Miljkovic D, Ripplinger D, Shaik S. Impact of biofuel policies on the use of land and energy in U.S. agriculture. J Policy Model. 2016;38:1089–98.

    Article  Google Scholar 

  92. Panichelli L, Gnansounou E. Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: key modelling choices. Renew Sust Energy Rev. 2015;42:344–60.

    Article  Google Scholar 

  93. Giovannetti G, Ticci E. Determinants of biofuel-oriented land acquisitions in Sub-Saharan Africa. Renew Sust Energy Rev. 2016;54:678–87.

    Article  Google Scholar 

  94. Hertel T, Steinbuks J, Baldos U. Competition for land in the global bioeconomy. Agric Econ. 2013;44:129–38.

    Article  Google Scholar 

  95. Lambin EF, Geist HJ, Lepers E. Dynamics of land-use and land-cover change in tropical regions. Annu Rev Environ Resour. 2003;28:205–41.

    Article  Google Scholar 

  96. Wassell CS, Dittmer TD. Are subsidies for biodiesel economically efficient? Energy Policy. 2006;34:3993–4001.

    Article  Google Scholar 

  97. Searchinger T, Heimlich R, Houghton RA, et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008;319:1238–40.

    Article  CAS  Google Scholar 

  98. Weinzettel J, Hertwich EG, Peters GP, Steen-Olsen K, Galli A. Affluence drives the global displacement of land use. Glob Environ Chang. 2013;23:433–8.

    Article  Google Scholar 

  99. O’Brien M, Schütz H, Bringezu S. The land footprint of the EU bioeconomy: monitoring tools, gaps and needs. Land Use Policy. 2015;47:235–46.

    Article  Google Scholar 

  100. Powlson DS, Gregory PJ, Whalley WR, et al. Soil management in relation to sustainable agriculture and ecosystem services. Food Policy. 2011;36:S72–87.

    Article  Google Scholar 

  101. Wall DH, Six J. Give soils their due. Science. 2015;347:695.

    Article  CAS  Google Scholar 

  102. Koch A, McBratney A, Adams M, et al. Soil security: solving the global soil crisis. Glob Policy. 2013;4:434–41.

    Article  Google Scholar 

  103. Montanarella L, Vargas R. Global governance of soil resources as a necessary condition for sustainable development. Curr Opin Environ Sustain. 2012;4:559–64.

    Article  Google Scholar 

  104. Howard T, Larson A. Soil governance: assessing cross-disciplinary perspectives. Int J Rural Law Policy. 2015;1:1–8.

    Google Scholar 

  105. Weigelt J, Müller A, Janetschek H, Töpfer K. Land and soil governance towards a transformational post-2015 development agenda: an overview. Curr Opin Environ Sustain. 2015;15:57–65.

    Article  Google Scholar 

  106. Huston MA. The three phases of land-use change: implications for biodiversity. Ecol Appl. 2005;15:1864–78.

    Article  Google Scholar 

  107. Plieninger T, Gaertner M. Harnessing degraded lands for biodiversity conservation. J Nat Conserv. 2011;19:18–23.

    Article  Google Scholar 

  108. Eppink FV, van den Bergh JCJM. Ecological theories and indicators in economic models of biodiversity loss and conservation: a critical review. Ecol Econ. 2007;61:284–93.

    Article  Google Scholar 

  109. Fletcher RJ, Robertson BA, Evans J, et al. Biodiversity conservation in the era of biofuels: risks and opportunities. Front Ecol Environ. 2011;9:161–8.

    Article  Google Scholar 

  110. Jeswani HK, Azapagic A. Life cycle sustainability assessment of second generation biodiesel. In: Luque R, Melero JA, editors. Advances in biodiesel preparation – Second generation processes and technologies. Sawston: Woodhead; 2012.

    Google Scholar 

  111. Barney JN, DiTomaso JM. Global climate niche estimates for bioenergy crops and invasive species of agronomic origin: potential problems and opportunities. PLoS One. 2011;6:e17222.

    Article  CAS  Google Scholar 

  112. Pheloung PC, Williams PA, Halloy SR. A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manag. 1999;57:239–51.

    Article  Google Scholar 

  113. Gordon DR, Tancig KJ, Onderdonk DA, Gantz CA. Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian weed risk assessment. Biomass Bioenergy. 2011;35:74–9.

    Article  Google Scholar 

  114. Witt ABR. Biofuels and invasive species from an African perspective – a review. GCB Bioenergy. 2010;2:321–9.

    Article  Google Scholar 

  115. Moraes MM, Ringler C, Cai X. Policies and instruments affecting water use for bioenergy production. Biofuels Bioprod Biorefin. 2011;5:431–44.

    Article  CAS  Google Scholar 

  116. Gheewala SH, Berndes G, Jewitt G. The bioenergy and water nexus. Biofuels Bioprod Biorefin. 2011;5:353–60.

    Article  CAS  Google Scholar 

  117. Miller CA. Modeling risk in complex bioeconomies. J Respons Innov. 2015;2:124–7.

    Article  Google Scholar 

  118. Golden JS, Handfield R. The emergent industrial bioeconomy. Ind Biotechnol. 2014;10:371–5.

    Article  Google Scholar 

  119. Venkata MS, Nikhil GN, Chiranjeevi P, et al. Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol. 2016;215:2–12.

    Article  CAS  Google Scholar 

  120. Cordella M, Torri C, Adamiano A, et al. Bio-oils from biomass slow pyrolysis: a chemical and toxicological screening. J Hazard Mater. 2012;231:26–35.

    Article  CAS  Google Scholar 

  121. Pimenta AS, Bayona JM, Garcia MT, Solanas AM. Evaluation of acute toxicity and genotoxicity of liquid products from pyrolysis of Eucalyptus grandis wood. Arch Environ Contamin Toxicol. 2000;38:169–75.

    Article  CAS  Google Scholar 

  122. Bernardo M, Lapa N, Barbosa R, et al. Chemical and ecotoxicological characterization of solid residues produced during the co-pyrolysis of plastics and pine biomass. J Hazard Mater. 2009;166:309–17.

    Article  CAS  Google Scholar 

  123. Rockström J, Steffen W, Noone K, et al. A safe operating space for humanity. Nature. 2009;461:472–5.

    Article  CAS  Google Scholar 

  124. Mace GM, Reyers B, Alkemade R, et al. Approaches to defining a planetary boundary for biodiversity. Glob Environ Chang. 2014;28:289–97.

    Article  Google Scholar 

  125. Roughgarden T, Schneider SH. Climate change policy: quantifying uncertainties for damages and optimal carbon taxes. Energy Policy. 1999;27:415–29.

    Article  Google Scholar 

  126. Warren R. Environmental economics: optimal carbon tax doubled. Nat Clim Chang. 2014;4:534–5.

    Article  Google Scholar 

  127. Sachs I. Social sustainability and whole development: exploring the dimensions of sustainable development. In: Egon B, Thomas J, editors. Sustainability and the social sciences: a cross-disciplinary approach to integrating environmental considerations into theoretical reorientation. London: Zed Books; 1999.

    Google Scholar 

  128. Spangenberg JH, Omannn I. Assessing social sustainability: social sustainability and its multicriteria assessment in a sustainability scenario for Germany. Int J Innov Sustain Dev. 2006;1:318–48.

    Article  Google Scholar 

  129. Lehtonen M. The environmental–social interface of sustainable development: capabilities, social capital, institutions. Ecol Econ. 2004;49:199–214.

    Article  Google Scholar 

  130. Gould R, Missimer M, Mesquita PL. Using social sustainability principles to analyse activities of the extraction lifecycle phase: learnings from designing support for concept selection. J Clean Prod. 2017;140:267–76.

    Article  Google Scholar 

  131. Carrez D. European bioeconomy 2013: € 2.1 trillion turnover and 18.3 million employees. Press release from the bio-based industries consortium (BIC). 2016. http://biconsortium.eu/sites/biconsortium.eu/files/news-image/BIC_PressRelease_Bioeconomy2013_3March2016.pdf. Published 3 Mar 2016.

  132. Reinshagen P. Bioeconomy: much more employment in biobased chemicals than in biofuels. Bio Based Press. 2015. http://www.biobasedpress.eu/2015/06/bioeconomy-much-more-employment-in-biobased-chemicals-than-in-biofuels/. Published 2 June 2015.

  133. ePURE – European renewable ethanol. Jobs & Growth. 2016. http://epure.org/about-ethanol/ethanol-benefits/jobs-and-growth/

  134. Kromus S, Wachter B, Koschuh M, et al. The green biorefinery Austria-development of an integrated system for green biomass utilization. Chem Biochem Eng Q. 2004;18:8–12.

    Google Scholar 

  135. Urbanchuk JM. ABF economics – contribution of the ethanol industry to the economy of the United States in 2015. 2016. http://www.ethanolrfa.org/wp-content/uploads/2016/02/Ethanol-Economic-Impact-for-2015.pdf. Published 5 Feb 2016.

  136. National Biodiesel Board. Production statistics. 2016. http://biodiesel.org/production/production-statistics

  137. US Department of Energy – Energy efficiency and renewable energy. Green jobs in the U.S. bioeconomy DOE/EE-1222. 2015. https://www.energy.gov/sites/prod/files/2015/05/f22/bioenergy_green_jobs_factsheet_2015.pdf

  138. Tenenbaum DJ. Food vs fuel: diversion of crops could cause more hunger. Environ Health Perspect. 2008;116:A254–7.

    Article  Google Scholar 

  139. Tadasse G, Algieri B, Kalkuhl M, von Braun J. Drivers and triggers of international food price spikes and volatility. In: Kalkuhl M, von Braun J, Torero M, editors. Food price volatility and its implications for food security and policy. Berlin: Springer; 2016.

    Google Scholar 

  140. Ajanovic A. Biofuels versus food production: does biofuels production increase food prices? Energy. 2011;36:2070–6.

    Article  Google Scholar 

  141. United Nations Department of Economic and Social Affairs. World population projected to reach 9.7 billion by 2050. 2015. http://www.un.org/en/development/desa/news/population/2015-report.html. Published 29 July 2015.

  142. Lal R. Food security in a changing climate. Ecohydrol Hydrobiol. 2013;13:8–21.

    Article  Google Scholar 

  143. Pauly D, Christensen V, Guénette S, et al. Towards sustainability in world fisheries. Nature. 2002;418:689–95.

    Article  CAS  Google Scholar 

  144. Smith P, Gregory PJ. Climate change and sustainable food production. Proc Nutr Soc. 2013;72:21–8.

    Article  Google Scholar 

  145. Garnett T, Appleby MC, Balmford A, et al. Sustainable intensification in agriculture: premises and policies. Science. 2013;341:33–4.

    Article  CAS  Google Scholar 

  146. McKenzie FC, Williams J. Sustainable food production: constraints, challenges and choices by 2050. Food Sec. 2015;7:221–33.

    Article  Google Scholar 

  147. Godfray HCJ, Beddington JR, Crute IR, et al. Science. 2010;327:812–8.

    Article  CAS  Google Scholar 

  148. Pretty J. Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363:447–65.

    Article  Google Scholar 

  149. Balmford A, Green R, Scharlemann JP. Sparing land for nature: exploring the potential impact of changes in agricultural yield on the area needed for crop production. Glob Chang Biol. 2005;11:1594–605.

    Article  Google Scholar 

  150. Udmale PD, Ichikawa Y, Kiem AS, Panda SN. Drought impacts and adaptation strategies for agriculture and rural livelihood in the Maharashtra state of India. Open Agric J. 2014;8:41–7.

    Article  Google Scholar 

  151. Thomas DSG, Middleton NJ. Salinization: new perspectives on a major desertification issue. J Arid Environ. 1993;24:95–105.

    Article  Google Scholar 

  152. D’Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW. Global desertification: drivers and feedbacks. Adv Water Resour. 2013;51:326–44.

    Article  Google Scholar 

  153. Danfeng S, Dawson R, Baoguo L. Agricultural causes of desertification risk in Minqin. China J Environ Manag. 2006;79:348–56.

    Article  Google Scholar 

  154. Wheeler T, von Braun J. Climate change impacts on global food security. Science. 2013;341:508–13.

    Article  CAS  Google Scholar 

  155. Crush J. Linking food security, migration and development. Int Migr. 2013;51:61–75.

    Article  Google Scholar 

  156. Schmidhuber J, Tubiello FN. Global food security under climate change. Proc Natl Acad Sci. 2007;104:19703–8.

    Article  CAS  Google Scholar 

  157. Lobell DB, Burke MB, Tebaldi C, et al. Prioritizing climate change adaptation needs for food Security in 2030. Science. 2008;319:607–10.

    Article  CAS  Google Scholar 

  158. Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci. 2011;108:20260–4.

    Article  CAS  Google Scholar 

  159. Pretty J, Toulmin C, Williams S. Sustainable intensification in African agriculture. Int J Agric Sustain. 2011;9:5–24.

    Article  Google Scholar 

  160. Walters C, Martell SJ. Stock assessment needs for sustainable fisheries management. Bull Mar Sci. 2002;70:629–38.

    Google Scholar 

  161. Subasinghe R, Soto D, Jia J. Global aquaculture and its role in sustainable development. Rev Aquac. 2009;1:2–9.

    Article  Google Scholar 

  162. Wijnbergen SV. The Dutch disease: a disease after all? Econ J. 1984;94:41–55.

    Google Scholar 

  163. Ross ML. The oil curse: how petroleum wealth shapes the development of nations. USA: Princeton University Press; 2012.

    Google Scholar 

  164. Jansen AR. Second generation biofuels and biomasses. Essential guide for investors, scientists and decision makers. New Jersey: Wiley; 2013.

    Google Scholar 

  165. Ross ML. Blood barrels: why oil wealth fuels conflict. Foreign Aff. 2008;87:1–7.

    Google Scholar 

  166. Vidal J. Energy: a crude awakening. Nature. 2012;482:306.

    Article  CAS  Google Scholar 

  167. Chisti Y. A bioeconomy vision of sustainability. Biofuels Bioprod Biorefin. 2010;4:359–61.

    Article  CAS  Google Scholar 

  168. Tawfik M. Asia and bioeconomy: growing synergies. Asian Biotechnol Dev Rev. 2004;6:5–8.

    Google Scholar 

  169. Clarke T. Tar sands showdown: Canada and the new politics of oil in an age of climate change. Toronto: Lorimer; 2009.

    Google Scholar 

  170. Bjørlykke K. Unconventional hydrocarbons: oil shales, heavy oil, tar sands, shale oil, shale gas and gas hydrates. In: Bjørlykke K, editor. Petroleum geoscience – from sedimentary environments to rock physics. Berlin: Springer; 2015.

    Google Scholar 

  171. El-Chichakli B, von Braun J, Lang C, Barben D, Philp J. Policy: five cornerstones of a global bioeconomy. Nature. 2016;535:221–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sillanpää, M., Ncibi, C. (2017). Bioeconomy: Multidimensional Impacts and Challenges. In: A Sustainable Bioeconomy. Springer, Cham. https://doi.org/10.1007/978-3-319-55637-6_9

Download citation

Publish with us

Policies and ethics