Skip to main content

Biomaterials

  • Chapter
  • First Online:
A Sustainable Bioeconomy
  • 2002 Accesses

Abstract

The production of various biomaterials from bioresources and biowastes is a major industrial activity in bioeconomy. Providing markets with bio-based materials as replacements to the fossil-based ones is facing two main challenges. The first one is related to the wide range of materials to be replaced by bioproducts at a competitive basis (i.e., producing equal quantities of better quality products). The second challenge, which needs to be seriously taken into consideration in bioeconomy, is managing the expected competition over the available biomass between the industries involved in the production of materials and those in the biofuel and biochemical sectors.

In the present chapter, numerous materials derived from renewable biomass are presented, along with the involved mechanical, thermochemical, and biological production procedures. This includes pulp and paper, bioplastics from various biopolymers and microorganisms, as well as biochars and activated carbons with versatile applications such as energy storage, water and wastewater treatment, soil amendment and remediation, and CO2 sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCarthy P, Lei LJ. Regional demands for pulp and paper products. For Econ. 2010;16:127–44.

    Google Scholar 

  2. Laftah WA, Abdul Rahman WAW. Pulping process and the potential of using non-wood pineapple leaves fiber for pulp and paper production: a review. J Nat Fibers. 2016;13:85–102.

    Article  CAS  Google Scholar 

  3. Saijonkari-Pahkala K. Non-wood plants as raw material for pulp and paper. Academic Disseration. Available online at: https://helda.helsinki.fi/bitstream/handle/10138/20756/nonwoodp.pdf?...1

  4. Ali F, Sarma TC, Saikia CN. Pulp and paper from certain fast-growing plant species. Bioresour Technol. 1993;45:65–7.

    Article  CAS  Google Scholar 

  5. Ai J, Tschirner U. Fiber length and pulping characteristics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses. Bioresour Technol. 2010;101:215–21.

    Article  CAS  Google Scholar 

  6. Passas R. Natural fibres for paper and packaging. In: Kozłowski RM, editor. Handbook of natural fibres: processing and applications, vol. 2. Cambridge: Woodhead; 2012. p. 367–400.

    Chapter  Google Scholar 

  7. Oliver-Ortega H, Granda LA, Espinach FX, Mendez JA, Julian F, Mutjé P. Tensile properties and micromechanical analysis of stone groundwood from softwood reinforced bio-based polyamide11 composites. Compos Sci Technol. 2016;132:123–30.

    Article  CAS  Google Scholar 

  8. Sabharwal HS, Akhtar M, Blanchette RA, Young RA. Refiner mechanical and biomechanical pulping of jute. Holzforschung. 1995;49:537–44.

    Article  CAS  Google Scholar 

  9. Harinath E, Biegler LT, Dumont GA. Predictive optimal control for thermo-mechanical pulping processes with multi-stage low consistency refining. J Process Control. 2013;23:1001–11.

    Article  CAS  Google Scholar 

  10. Hou Q, Wang Y, Liu W, Liu L, Xu N, Li Y. An application study of autohydrolysis pretreatment prior to poplar chemi-thermomechanical pulping. Bioresour Technol. 2014;169:155–61.

    Article  CAS  Google Scholar 

  11. Fernando D, Rosenberg P, Persson E, Daniel G. Fibre development during stone grinding: ultrastructural characterisation for understanding derived properties. Holzforschung. 2007;61:532–8.

    Article  CAS  Google Scholar 

  12. Martin N, Anglani N, Einstein D, Khrushch M, Worrell E, Price LK. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry. Lawrence Berkeley National Laboratory, CA. Report LBNL-46141. 2000. Available online at: https://publications.lbl.gov/islandora/object/ir%3A115962/spms_tab

  13. Sixta H. Chemical pulping. In: Sixta H, editor. Handbook of pulp. Weinheim: Wiley-VCH; 2006.

    Chapter  Google Scholar 

  14. Francis RC, Bolton TS, Abdoulmoumine N, Lavrykova N, Bose SK. Positive and negative aspects of soda/anthraquinone pulping of hardwoods. Bioresour Technol. 2008;99:8453–7.

    Article  CAS  Google Scholar 

  15. Gierer J. Chemical aspects of Kraft pulping. Wood Sci Technol. 1980;14:241–66.

    Article  CAS  Google Scholar 

  16. Dutt D, Upadhyay JS, Singh B, Tyagi CH. Studies on Hibiscus cannabinus and Hibiscus sabdariffa as an alternative pulp blend for softwood: an optimization of Kraft delignification process. Ind Crop Prod. 2009;29:16–26.

    Article  CAS  Google Scholar 

  17. Hou Q, Yang B, Liu W, Liu H, Hong Y, Zhang R. Co-refining of wheat straw pulp and hardwood Kraft pulp. Carbohydr Polym. 2011;86:255–9.

    Article  CAS  Google Scholar 

  18. Yuan Z, Kapu NS, Beatson R, Chang XF, Martinez DM. Effect of alkaline pre-extraction of hemicelluloses and silica on Kraft pulping of bamboo (Neosinocalamus affinis Keng). Ind Crop Prod. 2016;91:66–75.

    Article  CAS  Google Scholar 

  19. Tomani P. The LignoBoost process. Cellul Chem Technol. 2010;44:53–8.

    CAS  Google Scholar 

  20. Gellerstedt G. Softwood Kraft lignin: raw material for the future. Ind Crop Prod. 2015;77:845–54.

    Article  CAS  Google Scholar 

  21. Bryce JRG. Sulfite pulping. In: Casey JP, editor. Pulp and paper: chemistry and chemical technology. 3rd ed. New York: Wiley; 1980. p. 291–376.

    Google Scholar 

  22. Ingruber O. Sulfite science part I: sulfite pulping cooking liquor and the four bases. In: Ingruber O, Kocurek M, Wong A, editors. Sulfite science and technology. The joint textbook committee of the paper industry. 3rd ed. Atlanta: TAPPI/CPPA; 1985. p. 3–23.

    Google Scholar 

  23. Schild G, Sixta H, Estova L. Multifunctional alkaline pulping, delignification and hemicellulose extraction. Cellul Chem Technol. 2010;4:35–45.

    Google Scholar 

  24. Office of Technology Assessment. Technologies for reducing dioxin in the manufacture of bleached wood Pulp (OTA-BP-O-54). Washington, DC: U.S. Government Printing Office; 1989.

    Google Scholar 

  25. Christov L, Biely P, Kalogeris E, Christakopoulos P, Prior BA, Bhat MK. Effects of purified endo-β-1,4-xylanases of family 10 and 11 and acetyl xylan esterases on eucalypt sulfite dissolving pulp. J Biotechnol. 2000;83:231–44.

    Article  CAS  Google Scholar 

  26. Wang H, Pang B, Wu K, Kong F, Li B, Mu X. Two stages of treatments for upgrading bleached softwood paper grade pulp to dissolving pulp for viscose production. Biochem Eng J. 2014;82:183–7.

    Article  CAS  Google Scholar 

  27. Schild G, Sixta H. Sulfur-free dissolving pulps and their application for viscose and lyocell. Cellulose. 2011;18:1113–28.

    Article  CAS  Google Scholar 

  28. Saka S, Takahashi T. Effects of solvent addition to acetylation medium on cellulose triacetate prepared from low-grade dissolving pulp. Cellul Cellul Deriv. 1995;219–226

    Google Scholar 

  29. Biermann CJ. Handbook of pulping and papermaking. Cambridge, MA: Academic Press; 1996.

    Google Scholar 

  30. Zhao X, van der Heide E, Zhang T, Liu D. Single-stage pulping of sugarcane bagasse with peracetic acid. J Wood Chem Technol. 2011;31:1–25.

    Article  CAS  Google Scholar 

  31. US EPA. Chemical Wood Pulping. Report. Available online at https://www3.epa.gov/ttnchie1/ap42/ch10/final/c10s02.pdf

  32. Johansson A, Aaltonen O, Ylinen P. Organosolv pulping: methods and pulp properties. Biomass. 1987;13:45–65.

    Article  CAS  Google Scholar 

  33. Hergert HL. Developments in organosolv pulping. An overview. In: Young RA, Akhtar M, editors. Environmentally friendly technologies for the pulp and paper industry. New York: Wiley; 1998.

    Google Scholar 

  34. Kinstrey RB. An overview of strategies for reducing the environmental impact of bleach-plant effluents. TAPPI J. 1993;76:105–13.

    CAS  Google Scholar 

  35. Muurinen E. Organosolv pulping—A review and distillation study related to peroxyacid pulping. Academic Dissertation. Available online at: http://jultika.oulu.fi/files/isbn9514256611.pdf

  36. Kordsachia O, Wandinger B, Patt R. Some investigations on ASAM pulping and chlorine free bleaching of eucalyptus from Spain. Holz Roh Werkst. 1992;50:85–91.

    Article  CAS  Google Scholar 

  37. Abad S, Santos V, Parajό JC. Two-stage acetosolv pulping of eucalyptus wood. Cellul Chem Technol. 2003;35:333–43.

    Google Scholar 

  38. Ferrer A, Vega A, Rodríguez A, Jiménez L. Acetosolv pulping for the fractionation of empty fruit bunches from palm oil industry. Bioresour Technol. 2013;132:115–20.

    Article  CAS  Google Scholar 

  39. Dapía S, Santos V, Parajó JC. Carboxymethylcellulose from totally chlorine-free-bleached milox pulps. Bioresour Technol. 2003;89:289–96.

    Article  CAS  Google Scholar 

  40. Ligero P, Villaverde JJ, Vega A, Bao M. Pulping cardoon (Cynara cardunculus) with peroxyformic acid (MILOX) in one single stage. Bioresour Technol. 2008;99:5687–93.

    Article  CAS  Google Scholar 

  41. Kramer KJ, Masanet E, Xu T, Worrell E. Energy efficiency improvement and cost saving opportunities for the pulp and pulp industry. Ernest Orlando Lawrence Berkeley National Laboratory. Report LBNL-2268E. 2009. Available online at: https://www.energystar.gov/ia/business/industry/downloads/Pulp_and_Paper_Energy_Guide.pdf

  42. Kong L, Hasanbeigi A, Price L. Assessment of emerging energy-efficiency technologies for the pulp and paper industry: a technical review. J Clean Prod. 2016;122:5–28.

    Article  CAS  Google Scholar 

  43. Industrial Technologies Program (ITP). Highly energy efficient D-GLU (Directed Green Liquor Utilization) pulping. U.S. Department of Energy, Washington, DC. 2011. Available online at: http://energy.gov/sites/prod/files/2014/05/f16/dglu_pulping.pdf

  44. Adnan S, Hoang M, Wang HT, Bolto B, Xie ZL. Recent trends in research, development and application of membrane technology in the pulp and paper industry. Appita. 2010;63:235–41.

    CAS  Google Scholar 

  45. Bjork M, Sjogren T, Lundin T, Rickards H, Kochesfahani S. Partial borate autocausticizing trial increases capacity at Swedish mill. TAPPI. 2005;88:15–9.

    Google Scholar 

  46. Muehlethaler E, Starkey Y, Salminen R, Harding D. Steam cycle washer for unbleached pulp. Final report. 21st Century Pulp and Paper and Idaho National Laboratory, Port Townsend, WA. 2008. Available online at: http://www.osti.gov/scitech/servlets/purl/937487

  47. Kemppainen K, Körkkö M, Niinimäki J. Fractional pulping of toner and pigment-based inkjet ink printed papers—ink and dirt behavior. Bioresources. 2011;6:2977–89.

    CAS  Google Scholar 

  48. Carvalho DMD, Perez A, Garcỉa JC, Colodette JL, Lόpez F, Diaz MJ. Ethanol-soda pulping of sugarcane bagasse and straw. Cellul Chem Technol. 2014;48:355–64.

    Google Scholar 

  49. Seo YB, Lee YW, Lee CH, You HC. Red algae and their use in papermaking. Bioresour Technol. 2010;101:2549–53.

    Article  CAS  Google Scholar 

  50. Jung KA, Lim SR, Kim Y, Park JM. Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol. 2013;135:182–90.

    Article  CAS  Google Scholar 

  51. Lloveras J, Santiveri F, Gorchs G. Hemp and flax biomass and fibre production and linseed yield in irrigated Mediterranean conditions. J Ind Hemp. 2006;11:3–15.

    Article  Google Scholar 

  52. Evaluation of the common market organization for flax and hemp. Summary of the final report. Available online at: http://ec.europa.eu/agriculture/eval/reports/lin/sum_en.pdf

  53. Gonzalez-Garcia S, Hospido A, Feijoo G, Moreira MT. Life cycle assessment of raw materials for non-wood pulp mills: hemp and flax. Resour Conserv Recycl. 2010;54:923–30.

    Article  Google Scholar 

  54. Jahan MS, Kanna GH, Mun SP, Chowdhury DA. Variations in chemical characteristics and pulpability within jute plant (Chorcorus capsularis). Ind Crop Prod. 2008;28:199–205.

    Article  CAS  Google Scholar 

  55. Marin F, Sanchez JL, Arauzo J, et al. Semichemical pulping of Miscanthus giganteus. Effect of pulping conditions on some pulp and paper properties. Bioresour Technol. 2009;100:3933–40.

    Article  CAS  Google Scholar 

  56. Dutta D, Upadhyay JS, Singh B, Tyagi CH. Studies on Hibiscus cannabinus and Hibiscus sabdariffa as an alternative pulp blend for softwood: an optimization of Kraft delignification process. Ind Crop Prod. 2009;29:16–26.

    Article  CAS  Google Scholar 

  57. Sanchez R, Rodriguez A, Navarro E, et al. Use of Hesperaloe funifera for the production of paper and extraction of lignin for synthesis and fuel gases. Biomass Bioenergy. 2010;34:1471–80.

    Article  CAS  Google Scholar 

  58. Seo YB, Lee YW, Lee CH, You HC. Red algae and their use in papermaking. Bioresour Technol. 2010;101:2549–53.

    Article  CAS  Google Scholar 

  59. Khiari R, Mhenni MF, Belgacem MN, Mauret E. Chemical composition and pulping of date palm rachis and Posidonia oceanica—a comparison with other wood and non-wood fibre sources. Bioresour Technol. 2010;101:775–80.

    Article  CAS  Google Scholar 

  60. Chao KP, Su YC, Chen CS. Feasibility of utilizing Rhizoclonium in pulping and papermaking. J Appl Phycol. 2000;12:53–62.

    Article  CAS  Google Scholar 

  61. Ververis C, Georghiou K, Danielidis D, et al. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour Technol. 2007;98:296–301.

    Article  CAS  Google Scholar 

  62. Jain A, Wei Y, Tietje A. Biochemical conversion of sugarcane bagasse into bioproducts. Biomass Bioenergy. 2016;93:227–42.

    Article  CAS  Google Scholar 

  63. Khristova P, Kordsachia O, Patt R, et al. Environmentally friendly pulping and bleaching of bagasse. Ind Crop Prod. 2006;23:131–9.

    Article  CAS  Google Scholar 

  64. Rodriguez A, Moral A, Serrano L, et al. Rice straw pulp obtained by using various methods. Bioresour Technol. 2008;99:2881–6.

    Article  CAS  Google Scholar 

  65. Hedjazi S, Kordsachia O, Patt R, et al. Alkaline sulfite–anthraquinone (AS/AQ) pulping of wheat straw and totally chlorine free (TCF) bleaching of pulps. Ind Crop Prod. 2009;29:27–36.

    Article  CAS  Google Scholar 

  66. Jahan MS, Rahman MM. Effect of pre-hydrolysis on the soda-anthraquinone pulping of corn stalks and Saccharum spontaneum (kash). Carbohydr Polym. 2012;88:583–8.

    Article  CAS  Google Scholar 

  67. Cole M, Lindeque P, Halsband C, Galloway ST. Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull. 2011;62:2588–97.

    Article  CAS  Google Scholar 

  68. Gross RA, Kalra B. Biodegradable polymers for the environment. Science. 2002;297:803–7.

    Article  CAS  Google Scholar 

  69. Jabeen N, Majid I, Nayik GA. Bioplastics and food packaging: a review. Cogent Food Agric. 2015;1:1117749.

    Google Scholar 

  70. Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S. Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol. 2005;31:55–67.

    Article  CAS  Google Scholar 

  71. Osanai T, Numata K, Oikawa A, et al. Increased bioplastic production with an RNA polymerase sigma factor SigE during nitrogen starvation in synechocystis sp. PCC 6803. DNA Res. 2013;20:525–35.

    Article  CAS  Google Scholar 

  72. Sagnelli D, Hebelstrup KH, Leroy E, et al. Plant-crafted starches for bioplastics production. Carbohydr Polym. 2016;152:398–408.

    Article  CAS  Google Scholar 

  73. Morone P, Tartiu VE, Falcone P. Assessing the potential of biowaste for bioplastics production through social network analysis. J Clean Prod. 2015;90:43–54.

    Article  Google Scholar 

  74. Hossain ABMS, Ibrahim NA, AlEissa MS. Nano-cellulose derived bioplastic biomaterial data for vehicle bio-bumper from banana peel waste biomass. Data Brief. 2016;8:286–94.

    Article  Google Scholar 

  75. Hempel F, Bozarth AS, Lindenkamp N, et al. Microalgae as bioreactors for bioplastic production. Microb Cell Factories. 2011;10(81):1–6.

    Google Scholar 

  76. Queiroz AU, Collares FP. Innovation and industrial trends in bioplastics. J Macromol Sci C Polym Rev. 2009;49:65–78.

    CAS  Google Scholar 

  77. Saharia J, Sapuan SM, Zainudin ES, Maleque MA. Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree (Arenga pinnata). Carbohydr Polym. 2013;92:1711–6.

    Article  CAS  Google Scholar 

  78. Song Y, Matsumoto K, Tanaka T, Kondo A, Taguchi S. Single-step production of polyhydroxybutyrate from starch by using α-amylase cell-surface displaying system of Corynebacterium glutamicum. J Biosci Bioeng. 2013;115:12–4.

    Article  CAS  Google Scholar 

  79. Liu H, Xie F, Yu L, et al. Thermal processing of starch-based polymers. Prog Polym Sci. 2009;34:1348–68.

    Article  CAS  Google Scholar 

  80. Wang Q, Cai J, Zhang L, et al. A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem A. 2013;1:6678–86.

    Article  CAS  Google Scholar 

  81. Mohanty AK, Wibowo A, Misra M, Drzal LT. Development of renewable resource-based cellulose acetate bioplastic: effect of process engineering on the performance of cellulosic plastics. Polym Eng Sci. 2003;43:1151–61.

    Article  CAS  Google Scholar 

  82. Ng KS, Ooi WY, Goh LK, et al. Evaluation of jatropha oil to produce poly(3-hydroxybutyrate) by Cupriavidus necator H16. Polym Degrad Stab. 2010;95:1365–9.

    Article  CAS  Google Scholar 

  83. Kim JR, Sharma S. The development and comparison of bio-thermoset plastics from epoxidized plant oils. Ind Crop Prod. 2012;36:485–99.

    Article  CAS  Google Scholar 

  84. Irorere VU, Bagherias S, Blevins M, Kwiecień I, Stamboulis A, Radecka I. Electrospun fibres of polyhydroxybutyrate synthesized by Ralstonia eutropha from different carbon sources. Int J Polym Sci. 2014;2014:705359.

    Article  CAS  Google Scholar 

  85. Hyakutake M, Saito Y, Tomizawa S, Mizuno K, Tsuge T. Polyhydroxyalkanoate (PHA) synthesis by class IV PHA synthases employing Ralstonia eutropha PHB-4 as host strain. Biosci Biotechnol Biochem. 2011;75:1615–7.

    Article  CAS  Google Scholar 

  86. Sun S, Song Y, Zheng Q. Morphologies and properties of thermo-molded biodegradable plastics based on glycerol-plasticized wheat gluten. Food Hydrocoll. 2007;21:1005–13.

    Article  CAS  Google Scholar 

  87. Song Y, Zheng Q. Improved tensile strength of glycerol-plasticized gluten bioplastic containing hydrophobic liquids. Bioresour Technol. 2008;99:7665–71.

    Article  CAS  Google Scholar 

  88. Sun XS, Kim HR, Mo X. Plastic performance of soybean protein components. J Am Oil Chem Soc. 1999;76:119–23.

    Google Scholar 

  89. Lodha P, Netravali AN. Thermal and mechanical properties of environment-friendly ‘green’ plastics from stearic acid modified-soy protein isolate. Ind Crop Prod. 2005;21:49–64.

    Article  CAS  Google Scholar 

  90. Tian H, Wang Y, Zhang L, et al. Improved flexibility and water resistance of soy protein thermoplastics containing waterborne polyurethane. Ind Crop Prod. 2010;32:13–20.

    Article  CAS  Google Scholar 

  91. Zeller MA, Hunt R, Jones A, Sharma S. Bioplastics and their thermoplastic blends from Spirulina and chlorella microalgae. J Appl Polym Sci. 2013;130:3263–75.

    Article  CAS  Google Scholar 

  92. Jerez A, Partal P, Martinez I, et al. Egg white-based bioplastics developed by thermomechanical processing. J Food Eng. 2007;82:608–17.

    Article  CAS  Google Scholar 

  93. Lee JY, Li P, Lee J, et al. Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresour Technol. 2013;127:119–25.

    Article  CAS  Google Scholar 

  94. Tian H, Wu W, Guo G, et al. Microstructure and properties of glycerol plasticized soy protein plastics containing castor oil. J Food Eng. 2012;109:496–500.

    Article  CAS  Google Scholar 

  95. Gutierrez JG, Partal P, Morales MG, Gallegos C. Effect of processing on the viscoelastic, tensile and optical properties of albumen/starch-based bioplastics. Carbohydr Polym. 2011;84:308–15.

    Article  CAS  Google Scholar 

  96. Dias AB, Muller CM, Larotonda FD, Laurindo JB. Mechanical and barrier properties of composite films based on rice flour and cellulose fibers. Food Sci Technol. 2011;44:535–42.

    CAS  Google Scholar 

  97. Kim YB, Lenz RW. Polyesters from microorganisms. In: Babel W, Steinbuchel A, editors. Advances in Biochemical Engineering Biotechnology. Berlin: Springer; 2000. p. 51–79.

    Google Scholar 

  98. de Koning G. Physical properties of bacterial poly((R)-3-hydroxyalkanoates). Can J Microbiol. 1995;41:303–9.

    Article  Google Scholar 

  99. Fernandez D, Rodriguez E, Bassas M, et al. Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: effect of culture conditions. Biochem Eng J. 2005;26:159–67.

    Article  CAS  Google Scholar 

  100. Bhuwal AK, Singh G, Aggarwal NK, et al. Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. Int J Biomater. 2013;2013:1–10.

    Article  CAS  Google Scholar 

  101. Nampoothiri KM, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresour Technol. 2010;101:8493–501.

    Article  CAS  Google Scholar 

  102. Shi X, Sun L, Jiang J, et al. Biodegradable polymeric microcarriers with controllable porous structure for tissue engineering. Macromol Biosci. 2009;9:1211–8.

    Article  CAS  Google Scholar 

  103. Jung YK, Lee SY. Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli. J Biotechnol. 2011;151:94–101.

    Article  CAS  Google Scholar 

  104. Erdohan ZO, Çama B, Turhan KN. Characterization of antimicrobial polylactic acid based films. J Food Eng. 2013;119:308–15.

    Article  CAS  Google Scholar 

  105. Kaneuchi C, Seki M, Komagata K. Production of succinic acid from citric acid and related acids by lactobacillus strains. Appl Environ Microbiol. 1988;54:3053–6.

    CAS  Google Scholar 

  106. Lee PC, Lee SY, Hong SH, Chang HN. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl Microbiol Biotechnol. 2002;58:663–8.

    Article  CAS  Google Scholar 

  107. Sonnenschei MF, Guillaudeu SJ, Landes BG, Wendt BL. Comparison of adipate and succinate polyesters in thermoplastic polyurethanes. Polymer. 2010;51:3685–92.

    Article  CAS  Google Scholar 

  108. Frollini E, Bartolucci N, Sisti L, Celli A. Poly(butylene succinate) reinforced with different lignocellulosic fibers. Ind Crop Prod. 2013;45:160–9.

    Article  CAS  Google Scholar 

  109. Abdel-Fattah TM, Mahmoud ME, Ahmed SB, Huff MD, Lee JW, Kumar S. Biochar from woody biomass for removing metal contaminants and carbon sequestration. J Ind Eng Chem. 2015;22:103–9.

    Article  CAS  Google Scholar 

  110. Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J Environ Manag. 2014;146:189–97.

    Article  CAS  Google Scholar 

  111. Ahmed MB, Zhou JL, Ngo HH, Guo W, Chen M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour Technol. 2016;214:836–51.

    Article  CAS  Google Scholar 

  112. Gai X, Wang H, Liu J, et al. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS One. 2014;9:e113888.

    Article  CAS  Google Scholar 

  113. Gasparovic L, Korenova Z, Jelemensky L. Kinetic study of wood chips decomposition by TGA. Chem Pap. 2010;64:174–81.

    Article  CAS  Google Scholar 

  114. Demirbas A, Arin G. An overview of biomass pyrolysis. Energy Sources. 2002;24:471–82.

    Article  CAS  Google Scholar 

  115. Laird DA, Brown RC, Amonette JE, Lehmann J. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefin. 2009;3:547–62.

    Article  CAS  Google Scholar 

  116. Nguyen TL, Hermansen JE, Nielsen RG. Environmental assessment of gasification technology for biomass conversion to energy in comparison with other alternatives: the case of wheat straw. J Clean Prod. 2013;53:138–48.

    Article  CAS  Google Scholar 

  117. Yang Y, Brammer JG, Mahmood ASN, Hornung A. Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour Technol. 2014;169:794–9.

    Article  CAS  Google Scholar 

  118. Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC. Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy. 2009;28:386–96.

    Article  CAS  Google Scholar 

  119. Horne PA, Williams PT. Influence of temperature on the products from the flash pyrolysis of biomass. Fuel. 1996;75:1051–9.

    Article  CAS  Google Scholar 

  120. Onay O, Kockar OM. Slow, fast and flash pyrolysis of rapeseed. Renew Energy. 2003;28:2417–33.

    Article  CAS  Google Scholar 

  121. Ncibi MC, Jeanne-Rose V, Mahjoub B, et al. Preparation and characterisation of raw chars and physically activated carbons derived from marine Posidonia oceanica (L.) fibres. J Hazard Mater. 2009;165:240–9.

    Article  CAS  Google Scholar 

  122. Gómez N, Rosas JG, Cara J, Martínez O, Alburquerque JA, Sánchez ME. Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 1. Effect of temperature on process performance on a pilot scale. J Clean Prod. 2016;120:181–90.

    Article  CAS  Google Scholar 

  123. Idris J, Shirai Y, Anduo Y, et al. Improved yield and higher heating value of biochar from oil palm biomass at low retention time under self-sustained carbonization. J Clean Prod. 2015;104:475–9.

    Article  CAS  Google Scholar 

  124. Crombie K, Masek O. Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. GCB Bioenergy. 2015;7:349–61.

    Article  CAS  Google Scholar 

  125. Zhang L, Xu C, Champagne P. Overview of recent advances in thermochemical conversion of biomass. Energy Convers Manag. 2010;51:969–82.

    Article  CAS  Google Scholar 

  126. Benavente V, Fullana A. Torrefaction of olive mill waste. Biomass Bioenergy. 2015;73:186–94.

    Article  CAS  Google Scholar 

  127. Sadaka S, Negi S. Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ Prog Sustain Energy. 2009;28:427–34.

    Article  CAS  Google Scholar 

  128. Couhert C, Salvador S, Commandre J. Impact of torrefaction on syngas production from wood. Fuel. 2009;88:2286–90.

    Article  CAS  Google Scholar 

  129. Arias B, Pevida C, Fermoso J, Plaza M, Rubiera F, Pis J. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol. 2008;89:169–75.

    Article  CAS  Google Scholar 

  130. Liu Z, Balasubramanian R. Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): a comparative evaluation. Appl Energy. 2014;114:857–64.

    Article  CAS  Google Scholar 

  131. Liu Z, Quek A, Hoekman SK, Balasubramanian R. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel. 2013;103:943–9.

    Article  CAS  Google Scholar 

  132. Kumar D, Pant KK. Production and characterization of biocrude and biochar obtained from non-edible de-oiled seed cakes hydrothermal conversion. J Anal Appl Pyrolysis. 2015;115:77–86.

    Article  CAS  Google Scholar 

  133. Palumbo AW, Sorli JC, Weimer AW. High temperature thermochemical processing of biomass and methane for high conversion and selectivity to H2-enriched syngas. Appl Energy. 2015;157:13–24.

    Article  CAS  Google Scholar 

  134. Libra JA, Ro KS, Kammann C, et al. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2011;2:89–124.

    Article  Google Scholar 

  135. Alatalo SM, Repo E, Mäkilä E, Salonen J, Vakkilainen E, Sillanpää M. Adsorption behavior of hydrothermally treated municipal sludge & pulp and paper industry sludge. Bioresour Technol. 2013;147:71–6.

    Article  CAS  Google Scholar 

  136. Funke A, Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin. 2010;4:160–77.

    Article  CAS  Google Scholar 

  137. Sabio E, Alvarez-Murillo A, Roman S, Ledesma B. Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: influence of the processing variables. Waste Manag. 2016;47:122–32.

    Article  CAS  Google Scholar 

  138. Cao X, Ro KS, Libra JA, et al. Effects of biomass types and carbonization conditions on the chemical characteristics of Hydrochars. J Agric Food Chem. 2013;61:9401–11.

    Article  CAS  Google Scholar 

  139. Schuhmacher JP, Huntjens FJ, van Krevelen DW. Chemical structure and properties of coal XXVI—studies on artificial coalification. Fuel. 1960;39:223–34.

    CAS  Google Scholar 

  140. Antal MJ, Gronli M. The art, science, and technology of charcoal production. Ind Eng Chem Res. 2003;42:1619–40.

    Article  CAS  Google Scholar 

  141. Ruyter HP. Coalification model. Fuel. 1982;61:1182–7.

    Article  CAS  Google Scholar 

  142. Pratt K, Moran D. Evaluating the cost-effectiveness of global biochar mitigation potential. Biomass Bioenergy. 2010;34:1149–58.

    Article  CAS  Google Scholar 

  143. Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ. 2015;206:46–59.

    Article  CAS  Google Scholar 

  144. Intani K, Latif S, Rafayatul Kabir AKM, Müller J. Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves. Bioresour Technol. 2016;218:541–51.

    Article  CAS  Google Scholar 

  145. Brewer CE, Brown RC. Biochar. In: Sayigh A, editor. Comprehensive renewable energy. Oxford: Elsevier; 2012. p. 357–84.

    Chapter  Google Scholar 

  146. Novak JM, Cantrell KB, Watts DW. Compositional and thermal evaluation of lignocellulosic and poultry litter chars via high and low temperature pyrolysis. Bioenergy Res. 2013;6:114–30.

    Article  CAS  Google Scholar 

  147. Huff MD, Kumar S, Lee JW. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. J Environ Manag. 2014;146:303–8.

    Article  CAS  Google Scholar 

  148. Chen B, Chen Z. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere. 2009;76:127–33.

    Article  CAS  Google Scholar 

  149. Chen B, Zhou D, Zhu L. Transitional adsorption and partition on nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol. 2008;42:5137–43.

    Article  CAS  Google Scholar 

  150. Ahmad M, Lee SS, Dou X, et al. Effects of pyrolysis temperature on soybean Stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol. 2012;118:536–44.

    Article  CAS  Google Scholar 

  151. Keiluweit M, Nico PS, Johnson MG, Kleber M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol. 2010;44:1247–53.

    Article  CAS  Google Scholar 

  152. Ahmad M, Rajapaksha AU, Lim JE. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 2014;99:19–33.

    Article  CAS  Google Scholar 

  153. Karaosmanoglu F, Ergudenler AI, Sever A. Biochar from the straw–stalk of rapeseed plant. Energy Fuel. 2000;14:336–9.

    Article  CAS  Google Scholar 

  154. Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences. 2014;11:6613–21.

    Article  Google Scholar 

  155. Uchimiya M, Chang S, Klasson KT. Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater. 2011;190:432–41.

    Article  CAS  Google Scholar 

  156. Zielinska A, Oleszczuk P. Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene. Bioresour Technol. 2015;192:618–26.

    Article  CAS  Google Scholar 

  157. Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol. 2012;107:419–28.

    Article  CAS  Google Scholar 

  158. Liu N, Charrua AB, Weng CH, Yuan X, Ding F. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: a comparative study. Bioresour Technol. 2015;198:55–62.

    Article  CAS  Google Scholar 

  159. Bhatnagar A, Hogland W, Marques M, Sillanpää M. An overview of the modification methods of activated carbon for its water treatment applications. Chem Eng J. 2013;219:499–511.

    Article  CAS  Google Scholar 

  160. Ould-Idriss A, Stitou M, Cuerda-Correa EM. Preparation of activated carbons from olive-tree wood revisited. II. Physical activation with air. Fuel Process Technol. 2011;92:266–70.

    Article  CAS  Google Scholar 

  161. Jung SH, Kim JS. Production of biochars by intermediate pyrolysis and activated carbons from oak by three activation methods using CO2. J Anal Appl Pyrolysis. 2014;107:116–22.

    Article  CAS  Google Scholar 

  162. Shim TY, Yoo JS, Ryu C, Park YK, Jung J. Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity. Bioresour Technol. 2015;197:85–90.

    Article  CAS  Google Scholar 

  163. Demiral H, Demiral I, Karabacakoglu B, Tümsek F. Production of activated carbon from olive bagasse by physical activation. Chem Eng Res Des. 2011;89:206–13.

    Article  CAS  Google Scholar 

  164. Jimenez-Cordero D, Heras F, Alonso-Morales N, Gilarranz MA, Rodriguez JJ. Ozone as oxidation agent in cyclic activation of biochar. Fuel Process Technol. 2015;139:42–8.

    Article  CAS  Google Scholar 

  165. Cha JS, Park SH, Jung SC. Production and utilization of biochar: a review. J Ind Eng Chem. 2016;40:1–15.

    Article  CAS  Google Scholar 

  166. Bansal RC, Donnet JB, Stoeckli F. Active carbon. New York: Marcel Dekker; 1998.

    Google Scholar 

  167. Buchel KH, Moretto HH, Woditsch P. Industrial inorganic chemistry. 2nd ed. Weinheim: Wiley-VCH; 2000.

    Book  Google Scholar 

  168. Ncibi MC, Altenor S, Seffen M, Brouers F, Gaspard S. Modelling single compound adsorption onto porous and non-porous sorbents using a deformed Weibull exponential isotherm. Chem Eng J. 2008;145:196–202.

    Article  CAS  Google Scholar 

  169. Meryemoglu B, Irmak S, Hasanoglu A. Production of activated carbon materials from kenaf biomass to be used as catalyst support in aqueous-phase reforming process. Fuel Process Technol. 2016;151:59–63.

    Article  CAS  Google Scholar 

  170. Pak SH, Jeon MJ, Jeon YW. Study of sulfuric acid treatment of activated carbon used to enhance mixed VOC removal. Int Biodeter Biodegrad. 2016;113:195–200.

    Article  CAS  Google Scholar 

  171. Park J, Hung I, Gan Z, Rojas OJ, Lim KH, Park S. Activated carbon from biochar: influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresour Technol. 2013;149:383–9.

    Article  CAS  Google Scholar 

  172. Menéndez-Diaz JA, Martin-Gullon I. Types of carbon adsorbents and their production, in activated carbon surfaces in environmental remediation. In: Bandosz TJ, editor. Interface science and technology, vol. 7. Oxford: Academic Press, Elsevier; 2006.

    Google Scholar 

  173. Kumar A, Jena HM. High surface area microporous activated carbons prepared from fox nut (Euryale ferox) shell by zinc chloride activation. Appl Surf Sci. 2015;356:753–61.

    Article  CAS  Google Scholar 

  174. Gokce Y, Aktas Z. Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol. Appl Surf Sci. 2014;313:352–9.

    Article  CAS  Google Scholar 

  175. Prahas D, Kartika Y, Indraswati N, Ismadji S. Activated carbon from jackfruit peel waste by H3PO4 chemical activation. Chem Eng J. 2008;140:32–42.

    Article  CAS  Google Scholar 

  176. Wyman CE, Dale BE, Elander RT, Holtzappl M, Ladisch MR, Lee YY. Coordinated development of leading biomass pretreatment technologies. Bioresour Technol. 2005;96:1959–66.

    Article  CAS  Google Scholar 

  177. Ros A, Lillo-Rodenas MA, Fuente E, Montes-Moran MA, Martin MJ, Linares-Solano A. High surface area materials prepared from sewage sludge-based precursors. Chemosphere. 2006;65:132–40.

    Article  CAS  Google Scholar 

  178. Rouquerol F, Rouquerol J, Sing K. Adsorption by powders and porous solids: principles, methodology and applications. San Diego: Academic Press; 1999.

    Google Scholar 

  179. Brunauer S, Emmett PH, Teller EJ. Adsorption of gases in multimolecular layers. Am Chem Soc. 1938;60:309–19.

    Article  CAS  Google Scholar 

  180. Pomonis PJ, Petrakis DE, Ladavos AK, et al. A novel method for estimating the C-values of the BET equation in the whole range 0 < P/Po < 1 using a Scatchard-type treatment of it. Microporous Mesoporous Mater. 2004;69:97–107.

    Article  CAS  Google Scholar 

  181. Passe-Coutrin N, Altenor S, Cossement D, Jean-Marius C, Gaspard S. Comparison of parameters calculated from the BET and Freundlich isotherms obtained by nitrogen adsorption on activated carbons: A new method for calculating the specific surface area. Microporous Mesoporous Mater. 2008;111:517–22.

    Article  CAS  Google Scholar 

  182. Pelaez-Cid AA, Herrera-Gonzalez AM, Salazar-Villanueva M, Bautista-Hernandez A. Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization. J Environ Manag. 2016;181:269–78.

    Article  CAS  Google Scholar 

  183. Tay T, Ucar S, Karagoz S. Preparation and characterization of activated carbon from waste biomass. J Hazard Mater. 2009;165:481–5.

    Article  CAS  Google Scholar 

  184. Lin L, Zhai SR, Xiao ZY, Song Y, An QD, Song XW. Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresour Technol. 2013;136:437–43.

    Article  CAS  Google Scholar 

  185. Kalderis D, Bethanis S, Paraskeva P, Diamadopoulos E. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresour Technol. 2008;99:6809–16.

    Article  CAS  Google Scholar 

  186. Zhang FS, Nriagu JO, Itoh H. Mercury removal from water using activated carbons derived from organic sewage sludge. Water Res. 2005;39:389–95.

    Article  CAS  Google Scholar 

  187. Hu Z, Guo H, Srinivasan MP, Yaming N. A simple method for developing mesoporosity in activated carbon. Sep Purif Technol. 2003;31:47–52.

    Article  CAS  Google Scholar 

  188. Benadjemia M, Millière L, Reinert L, Benderdouche N, Duclaux L. Preparation, characterization and methylene blue adsorption of phosphoric acid activated carbons from globe artichoke leaves. Fuel Process Technol. 2011;92:1203–12.

    Article  CAS  Google Scholar 

  189. Nunell GV, Fernandez ME, Bonelli PR, Cukierman AL. Conversion of biomass from an invasive species into activated carbons for removal of nitrate from wastewater. Biomass Bioenergy. 2012;44:87–95.

    Article  CAS  Google Scholar 

  190. Angin D, Altintig E, Köse TE. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour Technol. 2013;148:542–9.

    Article  CAS  Google Scholar 

  191. Ncibi MC, Ranguin R, Pintor MJ, Jeanne-Rose V, Sillanpää M, Gaspard S. Preparation and characterization of chemically activated carbons derived from Mediterranean Posidonia oceanica (L.) fibres. J Anal Appl Pyrol. 2014;109:205–14.

    Article  CAS  Google Scholar 

  192. Huang LH, Sun YY, Yang T, Li L. Adsorption behavior of Ni (II) on lotus stalks derived active carbon by phosphoric acid activation. Desalination. 2011;268:12–9.

    Article  CAS  Google Scholar 

  193. Altenor S, Carene B, Emmanuel E, Lambert J, Ehrhardt JJ, Gaspard S. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. J Hazard Mater. 2009;165:1029–39.

    Article  CAS  Google Scholar 

  194. Gai X, Wang H, Liu J, et al. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS One. 2014;9:e113888.

    Article  CAS  Google Scholar 

  195. Li J, Li Y, Wu M, Zhang Z, Lu J. Effectiveness of low-temperature biochar in controlling the release and leaching of herbicides in soil. Plant Soil. 2013;370:333–44.

    Article  CAS  Google Scholar 

  196. Jiang J, Zhang L, Wang X. Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim Acta. 2013;113:481–9.

    Article  CAS  Google Scholar 

  197. Sun W, Lipka SM, Swartz C, Williams D, Yang F. Hemp-derived activated carbons for supercapacitors. Carbon. 2016;103:181–92.

    Article  CAS  Google Scholar 

  198. Sethia G, Sayari A. Activated carbon with optimum pore size distribution for hydrogen storage. Carbon. 2016;99:289–94.

    Article  CAS  Google Scholar 

  199. Heo YJ, Park SJ. Synthesis of activated carbon derived from rice husks for improving hydrogen storage capacity. J Ind Eng Chem. 2015;31:330–4.

    Article  CAS  Google Scholar 

  200. Pierpoint LM. Harnessing electricity storage for systems with intermittent sources of power: policy and R&D needs. Energy Policy. 2016;96:751–7.

    Article  Google Scholar 

  201. Agarkar S, Yadav P, Fernandes R, Kothari D, Suryawanshi A, Ogale S. Minute-made activated porous carbon from agro-waste for Li-ion battery anode using a low power microwave oven. Electrochim Acta. 2016;212:535–44.

    Article  CAS  Google Scholar 

  202. Miller JR, Simon P. Electrochemical capacitors for energy management. Science. 2008;321:651–2.

    Article  CAS  Google Scholar 

  203. Inal IIG, Holmes SM, Banford A, Aktas Z. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl Surf Sci. 2015;357:696–703.

    Article  CAS  Google Scholar 

  204. Pandolfo A, Hollenkamp A. Carbon properties and their role in supercapacitors. J. Power Sources. 2006;157:11–27.

    Article  CAS  Google Scholar 

  205. Cho EA, Lee SY, Park SJ. Effect of microporosity on nitrogen-doped microporous carbons for electrode of supercapacitor. Carbon Lett. 2014;15:210–3.

    Article  Google Scholar 

  206. Chen XY, Chen C, Zhang ZJ, et al. Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J Power Sources. 2013;230:50–8.

    Article  CAS  Google Scholar 

  207. Kim KS, Park SJ. Synthesis and high electrochemical capacitance of N-doped microporous carbon/carbon nanotubes for supercapacitor. J Electroanal Chem. 2012;673:58–64.

    Article  CAS  Google Scholar 

  208. Wu K, Liu Q. Nitrogen-doped mesoporous carbons for high performance supercapacitors. Appl Surf Sci. 2016;379:132–9.

    Article  CAS  Google Scholar 

  209. Abioye AM, Ani FN. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew Sust Energ Rev. 2015;52:1282–93.

    Article  CAS  Google Scholar 

  210. Zhang J, Gong L, Sun K, Jiang J, Zhang X. Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. J Solid State Electrochem. 2012;16:2179–86.

    Article  CAS  Google Scholar 

  211. Rufford TE, Hulicova-Jurcakova D, Zhu Z, Lu GQ. Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem Commun. 2008;10:1594–7.

    Article  CAS  Google Scholar 

  212. Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marin F, Moreno-Castilla C. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour Technol. 2012;111:185–90.

    Article  CAS  Google Scholar 

  213. Peng C, Yan XB, Wang RT, Lang JW, Ou YJ, Xue QJ. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochim Acta. 2013;87:401–8.

    Article  CAS  Google Scholar 

  214. Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu Z, Lu GQ. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources. 2010;195:912–8.

    Article  CAS  Google Scholar 

  215. Jin H, Wang X, Gu Z, Polin J. Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. J Power Sources. 2013;236:285–92.

    Article  CAS  Google Scholar 

  216. Cao Y, Wang K, Wang X, et al. Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation. Electrochim Acta. 2016;212:839–47.

    Article  CAS  Google Scholar 

  217. Li X, Xing W, Zhuo S, et al. Preparation of capacitor’s electrode from sunflower seed shell. Bioresour Technol. 2011;102:1118–23.

    Article  CAS  Google Scholar 

  218. Lv Y, Gan L, Liu M, et al. A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. J. Power Sources. 2012;209:152–7.

    Article  CAS  Google Scholar 

  219. He X, Ling P, Qiu J, et al. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density. J Power Sources. 2013;240:109–13.

    Article  CAS  Google Scholar 

  220. Taer E, Deraman M, Talib IA, Awildrus A, Hashmi SA, Umar AA. Preparation of highly porous binderless activated carbon monolith from rubber wood sawdust by a multi-step activation process for application in supercapacitors. Int J Electrochem Sci. 2011;6:3301–15.

    CAS  Google Scholar 

  221. Misnon II, Zain NKM, Abdul AR, Vidyaharan B, Jose R. Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochim Acta. 2015;174:78–86.

    Article  CAS  Google Scholar 

  222. Chen M, Kang X, Wumaier T, et al. Preparation of activated carbon from cotton stalk and its application in supercapacitor. J Solid State Electrochem. 2013;17:1005–12.

    Article  CAS  Google Scholar 

  223. Adinaveen T, Kennedy LJ, Vijaya JJ, Sekaran G. Surface and porous characterization of activated carbon prepared from pyrolysis (rice straw) by two-stage procedure and its applications in supercapacitor electrodes. J Mater Cycles Waste Manage. 2014;17:736–47.

    Article  CAS  Google Scholar 

  224. Meyer S, Bright RM, Fischer D, Schulz H, Glaser B. Albedo impact on the suitability of biochar systems to mitigate global warming. Environ Sci Technol. 2012;46:12726–34.

    Article  CAS  Google Scholar 

  225. Smith P. Soil carbon sequestration and biochar as negative emission technologies. Glob Chang Biol. 2016;22:1315–24.

    Article  Google Scholar 

  226. Woolf D, Amonette JE, Street-Perrott A, Lehmann J, Joseph S. Sustainable biochar to mitigate global climate change. Nature Commun. 2010;1(56):1–9.

    Article  CAS  Google Scholar 

  227. Yuan JH, Xu RK. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag. 2011;27:110–5.

    Article  Google Scholar 

  228. Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J. 2006;70:1719–30.

    Article  CAS  Google Scholar 

  229. Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ. 2015;206:46–59.

    Article  CAS  Google Scholar 

  230. Yuan JH, Xu RK, Wang N, Li JY. Amendment of acid soils with crop residues and biochars. Pedosphere. 2011;21:302–8.

    Article  Google Scholar 

  231. Novak JM, Busscher WJ, Watts DW, Laird DA, Ahemdna MA, Niandou MAS. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma. 2010;154:281–8.

    Article  CAS  Google Scholar 

  232. Kloss S, Zehetner F, Wimmer B, Buecker J, Rempt F, Soja G. Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions. J Plant Nutr Soil Sci. 2014;177:3–15.

    Article  CAS  Google Scholar 

  233. Dari B, Nair VD, Harris WG, Nair PKR, Sollenberger L, Mylavarapu R. Relative influence of soil- vs. biochar properties on soil phosphorus retention. Geoderma. 2016;280:82–7.

    Article  CAS  Google Scholar 

  234. Pandey V, Patel A, Patra DD. Biochar ameliorates crop productivity, soil fertility, essential oil yield and aroma profiling in basil (Ocimum basilicum L.). Ecol Eng. 2016;90:361–6.

    Article  Google Scholar 

  235. Liu Y, Lu H, Yang S, Wang Y. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crop Res. 2016;191:161–7.

    Article  Google Scholar 

  236. Kimetu J, Lehmann J, Ngoze S, et al. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems. 2008;11(5):726–39.

    Article  CAS  Google Scholar 

  237. Uzoma KC, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011;27:205–12.

    Article  Google Scholar 

  238. Van Zwieten L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil. 2010;327:235–46.

    Article  CAS  Google Scholar 

  239. Peng P, Lang YH, Wang XM. Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms. Ecol Eng. 2016;90:225–33.

    Article  Google Scholar 

  240. Moon HS, Kim IS, Kang SJ, Ryu SK. Adsorption of volatile organic compounds using activated carbon fiber filter in the automobiles. Carbon Lett. 2014;15:203–9.

    Article  Google Scholar 

  241. Martin SM, Kookana RS, Van Zwieten L, Krull E. Marked changes in herbicide sorption–desorption upon ageing of biochars in soil. J Hazard Mater. 2012;231:70–8.

    Article  CAS  Google Scholar 

  242. Garcia-Jaramillo M, Cox L, Cornejo J, Hermosin MC. Effect of soil organic amendments on the behavior of bentazone and tricyclazole. Sci Total Environ. 2014;466:906–13.

    Article  CAS  Google Scholar 

  243. Cabrera A, Cox L, Spokas KA, et al. Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents. J Agric Food Chem. 2011;59:12550–60.

    Article  CAS  Google Scholar 

  244. Cabrera A, Cox L, Spokas L, Hermosin MC, Cornejo J, Koskinen WC. Influence of biochar amendments on the sorption–desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil. Sci Total Environ. 2014;470:438–43.

    Article  CAS  Google Scholar 

  245. Dechene A, Rosendahl I, Laabs V, Amelung W. Sorption of polar herbicides and herbicide metabolites by biochar-amended soil. Chemosphere. 2014;109:180–6.

    Article  CAS  Google Scholar 

  246. Tatarkova V, Hiller E, Vaculik M. Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy) acetic acid and the growth of sunflower (Helianthus annuus L.). Ecotoxicol Environ Saf. 2013;92:215–21.

    Article  CAS  Google Scholar 

  247. Delwiche KB, Lehmann J, Walter MT. Atrazine leaching from biochar-amended soils. Chemosphere. 2014;95:346–52.

    Article  CAS  Google Scholar 

  248. Khorram MS, Wang Y, Jin X, Fang H, Yu Y. Reduced mobility of fomesafen through enhanced adsorption in biochar-amended soil. Environ Toxicol Chem. 2015;34:1258–66.

    Article  CAS  Google Scholar 

  249. Cao X, Ma L, Liang Y, Gao B, Harris W. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol. 2011;45:4884–9.

    Article  CAS  Google Scholar 

  250. Zheng W, Guo M, Chow T, Bennett DN, Rajagopalan N. Sorption properties of greenwaste biochar for two triazine pesticides. J Hazard Mater. 2010;181:121–6.

    Article  CAS  Google Scholar 

  251. Yang XB, Ying GG, Peng PA, et al. Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J Agric Food Chem. 2010;58:7915–21.

    Article  CAS  Google Scholar 

  252. Ahmad M, Lee SS, Dou X, et al. Effects of pyrolysis temperature on soybean Stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol. 2012;118:536–44.

    Article  CAS  Google Scholar 

  253. Zhou L, Liu Y, Liu S, et al. Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresour Technol. 2016;218:351–9.

    Article  CAS  Google Scholar 

  254. Yao Y, Gao B, Chen H, et al. Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. J Hazard Mater. 2012;209:408–13.

    Article  CAS  Google Scholar 

  255. Mahmoud ME, Nabil GM, El-Mallah NM, Bassiouny HI, Kumar S, Abdel-Fattah TM. Kinetics, isotherm, and thermodynamic studies of the adsorption of reactive red 195 a dye from water by modified switchgrass biochar adsorbent. J Ind Eng Chem. 2016;37:156–67.

    Article  CAS  Google Scholar 

  256. Yang K, Yang J, Jiang Y, Wu W, Lin D. Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar. Environ Pollut. 2016;210:57–64.

    Article  CAS  Google Scholar 

  257. Ashry A, Bailey EH, Chenery SRN, Young SD. Kinetic study of time-dependent fixation of UVI on biochar. J Hazard Mater. 2016;320:55–66.

    Article  CAS  Google Scholar 

  258. Liu P, Liu WJ, Jiang H, Chen JJ, Li WW, Yu HQ. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour Technol. 2012;121:235–40.

    Article  CAS  Google Scholar 

  259. Mestre AS, Bexiga AA, Proenca M, et al. Activated carbons from sisal waste by chemical activation with K2CO3: kinetics of paracetamol and ibuprofen removal from aqueous solution. Bioresour Technol. 2011;102:8253–60.

    Article  CAS  Google Scholar 

  260. Mochidzuki K, Sato N, Sakoda A. Production and characterization of carbonaceous adsorbents from biomass wastes by aqueous phase carbonization. Adsorption. 2005;11:669–73.

    Article  Google Scholar 

  261. Altenor S, Ncibi MC, Emmanuel E, Gaspard S. Textural characteristics, physiochemical properties and adsorption efficiencies of Caribbean alga Turbinaria turbinata and its derived carbonaceous materials for water treatment application. Biochem Eng J. 2012;67:35–44.

    Article  CAS  Google Scholar 

  262. Dubey SP, Dwivedi AD, Lee C, Kwon YN, Sillanpaa M, Ma LQ. Raspberry derived mesoporous carbon-tubules and fixed-bed adsorption of pharmaceutical drugs. J Ind Eng Chem. 2014;20:1126–32.

    Article  CAS  Google Scholar 

  263. Kadirvelu K, Kavipriya M, Karthika C, et al. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour Technol. 2003;87:129–32.

    Article  CAS  Google Scholar 

  264. Budinova T, Savova D, Tsyntsarski B, et al. Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions. Appl Surf Sci. 2009;255:4650–7.

    Article  CAS  Google Scholar 

  265. Kaçan E, Kütahyali C. Adsorption of strontium from aqueous solution using activated carbon produced from textile sewage sludges. J Anal Appl Pyrolysis. 2012;97:149–57.

    Article  CAS  Google Scholar 

  266. Sun Y, Li H, Li G, Gao B, Yue Q, Li X. Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation. Bioresour Technol. 2016;217:239–44.

    Article  CAS  Google Scholar 

  267. Valizadeh S, Younesi H, Bahramifar N. Highly mesoporous K2CO3 and KOH/activated carbon for SDBS removal from water samples: batch and fixed-bed column adsorption process. Environ Nanotechnol Monit Manage. 2016;6:1–13.

    Article  Google Scholar 

  268. Bautista-Toledo MI, Rivera-Utrilla J, Ocampo-Perez R, Carrasco-Marin F, Sanchez-Polo M. Cooperative adsorption of bisphenol-a and chromium(III) ions from water on activated carbons prepared from olive-mill waste. Carbon. 2014;73:338–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sillanpää, M., Ncibi, C. (2017). Biomaterials. In: A Sustainable Bioeconomy. Springer, Cham. https://doi.org/10.1007/978-3-319-55637-6_6

Download citation

Publish with us

Policies and ethics