Skip to main content

Applications of Fractional-Order Circuits

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

This chapter focuses on the design of novel topologies that are suitable for implementing fractional-order circuits, which offer attractive features, especially when they are applied in biomedical applications. The design examples that will be presented are (i) the efficiency of fractional-order differentiators for handling signals in a noisy environment using the Pan-Tompkins algorithm, (ii) a fully tunable implementation of a biological tissue using fractional-order capacitors, (iii) a simple non-impedancebased measuring technique for supercapacitors, and (iv) the design and evaluation of a fractional-order oscillator. Then main feature that has been proved is the fact that fractional-order circuits offer better performance when compared to their integer-order counterparts. In case of designing the fractional-order differentiator for being used in the Pan-Tompkins algorithm, the Sinh-Domain technique (companding filtering) has been employed, while the nonlinear transconductances that have been used as active elements were build using MOS transistors biased in subthreshold region, offering also the benefit of low- voltage operation. In addition, fractional-order capacitors are designed using OTAs as active elements, offering also the benefit of low- voltage operation. The behaviour of the proposed structures is evaluated through simulation results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tsividis, Y.: Externally linear, time-invariant systems and their applications to companding signal processors. IEEE Trans. Circ. Syst. II. 44(2), 65–85 (1997)

    Article  Google Scholar 

  2. Frey, D.R.: Log-domain filtering: an approach to current-mode filtering. IET Proc. Circ Dev. Syst. Pt.-G. 140(6), 406–416 (1996)

    Google Scholar 

  3. Serdijn, W., Kouwenhoven, M., Mulder, J., van Roermund, A.: Design of high dynamic range fully integratable translinear filters. Analog Integr. Circ. Sig. Proc. 19(3), 223–239 (1999)

    Article  Google Scholar 

  4. Katsiamis, A., Glaros, K., Drakakis, E.: Insights and advances on the design of CMOS sinh companding filters. IEEE Trans. Circ. Syst. I. 55(9), 2539–2550 (2008)

    Article  MathSciNet  Google Scholar 

  5. Psychalinos, C.: Low-voltage complex log-domain filters. IEEE Trans. Circ. Syst. I. 55(11), 3404–3412 (2008)

    Article  MathSciNet  Google Scholar 

  6. Psychalinos, C.: Log-domain SIMO and MISO low-voltage universal Biquads. Analog Integr. Circ. Sig. Proc. 67(2), 201–211 (2011)

    Article  Google Scholar 

  7. Kasimis, C., Psychalinos, C.: Design of Sinh-Domain filters using comple-mentary operators. Int. J. Circ. Theory Appl. 40(10), 1019–1039 (2012)

    Article  Google Scholar 

  8. Kasimis, C., Psychalinos, C.: 1.2V BiCMOS Sinh-Domain filters. Circ. Syst. Sig. Proc. 31(4), 1257–1277 (2012)

    Article  Google Scholar 

  9. Mulder, J., Serdijn, W.A., van der Woerd, A.C., van Roermund, A.H.M.: “A syllabic companding translinear Filter”, Proc. in IEEE International Symposium Circuits Systems (ISCAS), Hong Kong, pp. 101–104 (1997)

    Google Scholar 

  10. Adams, R.W.: “Filtering in the log domain”, Preprint #1470, 63rd AES Conference, New York (1979)

    Google Scholar 

  11. Tsirimokou, G., Laoudias, C., Psychalinos C.: 0.5-V fractional-order companding filters. Int. J. Circ. Theory Appl. 43(9), 1105–1126 (2015)

    Google Scholar 

  12. Tsirimokou, G., Laoudias, C., Psychalinos, C.: Tinnitus detector realization using sinh-domain circuits. J. Low Power Electron. 9(4), 458–470 (2013)

    Article  Google Scholar 

  13. Kafe, F., Psychalinos, C.: Realization of companding filters with large time-constants for biomedical applications. Analog Integr. Circ. Sig. Process. 78(1), 217–231 (2014)

    Article  Google Scholar 

  14. Pan, J., Tompkins, W.: A real-time QRS detection algorithm. I.E.E.E. Trans. Biomed. Eng. 32(3), 230–236 (1985)

    Article  Google Scholar 

  15. Hamilton, P., Tompkins, W.: Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans. Biomed.l Eng. 33(12), 1157–1165 (1986)

    Article  Google Scholar 

  16. Bailey, J., Berson, A., Garson, A., Horan, L., Macfarlane, P., Mortara, D., et al.: Recommendations for standardization and specifications in automated electrocardiography: bandwidth and digital signal processing. J. Am. Heart Assoc. Circ. 81, 730–739 (1990)

    Google Scholar 

  17. Kligfield, P., Gettes, L., Bailey, J., Childers, R., Deal, B., Hancock, W., et al.: Recommendations for the standardization and interpretation of the electrocardiogram part I: the electrocardiogram and its technology. Journal of the American Heart Association Circulation. 115, 1306–1324 (2007)

    Google Scholar 

  18. Ferdi, Y., Hebeuval, J., Charef, A., Boucheham, B.: R wave detection using fractional digital differentiation. ITBMRBM. 24(5-6), 273–280 (2003)

    Google Scholar 

  19. Goutas, A., Ferdi, Y., Herbeuval, J.P., Boudraa, M., Boucheham, B.: Digital fractional order differentiation-based algorithm for P and T-waves detection and delineation. Int. Arab. J. Inf. Technol. 26(2), 127–132 (2005)

    Google Scholar 

  20. Benmalek, M., Charef, A.: Digital fractional order operators for R-wave detection in electrocardiogram signal. IET Sig. Process. 3(5), 381–391 (2009)

    Article  Google Scholar 

  21. Sawigun, C., Serdijn, W.: Ultra-low-power, class-AB. CMOS four-quadrant current multiplier. Electron. Lett. 45(10), 483–484 (2009)

    Article  Google Scholar 

  22. Kasimis, C., Psychalinos, C.: 0.65 V class-AB current-mode four-quadrant multiplier with reduced power dissipation. Int. J. Electron. Commun. 65(7), 673–677 (2011)

    Article  Google Scholar 

  23. Tsirimokou, G., Psychalinos, C., Khanday, F.A., Shah N.A.: 0.5V Sinh-Domain Differentiator. Int. J. Electron. Lett. 3(1), 34–44 (2015)

    Google Scholar 

  24. http://www.physionet.org/physiotools/ecgsyn/. Accessed 25 Aug 2014

  25. Cole, K.S.: Permeability and impermeability of cell membranes for ions. Proc. Cold Spring. Harb. Lab. Symp. Quant. Biol. 8, 110–122 (1940)

    Article  Google Scholar 

  26. Freeborn, T.J.: A survey of fractional-order circuits models for biology and biomedicine. IEEE J. Emerging. Sel. Top. Circ. Syst. 3(3), 416–424 (2013)

    Article  Google Scholar 

  27. Maundy, B., Elwakil, A.S.: Extracting single dispersion Cole-Cole imped-ance model parameters using an integrator setup. Analog Int. Circ. Sig. Process. 71(1), 107–110 (2012)

    Article  Google Scholar 

  28. Abbey, C., Joos, G.: Supercapacitor energy storage for wind energy applications. IEEE Trans. Ind. Appl. 43(3), 769–776 (2007)

    Article  Google Scholar 

  29. Pegueroles-Queralt, J., Bianchi, F.D., Gomis-Bellmunt, O.: A power smoothing system based on supercapacitors for renewable distributed generation. IEEE Trans. Ind. Electron. 62(1), 343–350 (2015)

    Article  Google Scholar 

  30. Cao, J., Emadi, A.: A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles. IEEE Trans. Power Electron. 27(1), 122–132 (2012)

    Article  Google Scholar 

  31. Pandey, A., Allos, F., Hu A.P., et al.: “Integration of supercapacitors into wirelessly charged biomedical sensors”, in Proc. Of Sixth IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 56–61 (2011)

    Google Scholar 

  32. Kim, S., No, K.S., Chou, P.H.: Design and performance analysis of supercapacitor charging circuits for wireless sensor nodes. IEEE J. Emerging Sel. Top. Circ. Syst. 1(3), 391–402 (2011)

    Article  Google Scholar 

  33. Du, C., Pan, N.: High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology. 17(21), 5314 (2006)

    Article  Google Scholar 

  34. Mahon, P.J., Paul, G.L., Keshishian, S.M., Vassallo, A.M.: Measure-ment and modeling of the higher-power performance of carbon-based supercapacitors. J. Power Sources. 91(1), 68–76 (2000)

    Article  Google Scholar 

  35. Martynyuk, V., Ortigueira, M.: Fractional model of an electrochemical capacitor. Signal Process. 107(2), 355–360 (2015)

    Article  Google Scholar 

  36. Bondarenko, A., Ragoisha, G.: “Progress in Chemometrics Research” (Nova Science, New York, (http://www.abc.chemistry.bsu.by/vi/), 2005)

  37. Ahmed, W., Elkhazali, R., Elwakil, A.S.: Fractional-order Wienbridge oscillator. Electron. Lett. 37, 1110–1112 (2001)

    Article  Google Scholar 

  38. Radwan, A., Salama, K.,: Frcational-order RC and RL ciruits. Circuits, Systems and Signal Processing Journal. 31(6), 1901–1915 (2012)

    Article  Google Scholar 

  39. Freeborn, T.J., Maundy, B.J., Elwakil, A.S.: Fractional resonance based filters. Math. Probl. Eng. 726721, 1–10 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Radwan, A.G., Elwakil, A.S., Soliman, A.M.: Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circ. Syst. I. 55, 2051–2063 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Psychalinos, C., Pal, K., Vlassis, S.: A floating generalized impedance converter with current feedback amplifiers. Int. J. Electron. Commun. (AEU). 62, 81–85 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Tsirimokou, G., Psychalinos, C., Elwakil, A. (2017). Applications of Fractional-Order Circuits. In: Design of CMOS Analog Integrated Fractional-Order Circuits. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-55633-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55633-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55632-1

  • Online ISBN: 978-3-319-55633-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics