Applications of Fractional-Order Circuits

  • Georgia Tsirimokou
  • Costas Psychalinos
  • Ahmed Elwakil
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


This chapter focuses on the design of novel topologies that are suitable for implementing fractional-order circuits, which offer attractive features, especially when they are applied in biomedical applications. The design examples that will be presented are (i) the efficiency of fractional-order differentiators for handling signals in a noisy environment using the Pan-Tompkins algorithm, (ii) a fully tunable implementation of a biological tissue using fractional-order capacitors, (iii) a simple non-impedancebased measuring technique for supercapacitors, and (iv) the design and evaluation of a fractional-order oscillator. Then main feature that has been proved is the fact that fractional-order circuits offer better performance when compared to their integer-order counterparts. In case of designing the fractional-order differentiator for being used in the Pan-Tompkins algorithm, the Sinh-Domain technique (companding filtering) has been employed, while the nonlinear transconductances that have been used as active elements were build using MOS transistors biased in subthreshold region, offering also the benefit of low- voltage operation. In addition, fractional-order capacitors are designed using OTAs as active elements, offering also the benefit of low- voltage operation. The behaviour of the proposed structures is evaluated through simulation results.


Fractional-order integrators and differentiators Fractional-order capacitors Fractional-order oscillator Biomedical circuits Supercapacitors 


  1. 1.
    Tsividis, Y.: Externally linear, time-invariant systems and their applications to companding signal processors. IEEE Trans. Circ. Syst. II. 44(2), 65–85 (1997)CrossRefGoogle Scholar
  2. 2.
    Frey, D.R.: Log-domain filtering: an approach to current-mode filtering. IET Proc. Circ Dev. Syst. Pt.-G. 140(6), 406–416 (1996)Google Scholar
  3. 3.
    Serdijn, W., Kouwenhoven, M., Mulder, J., van Roermund, A.: Design of high dynamic range fully integratable translinear filters. Analog Integr. Circ. Sig. Proc. 19(3), 223–239 (1999)CrossRefGoogle Scholar
  4. 4.
    Katsiamis, A., Glaros, K., Drakakis, E.: Insights and advances on the design of CMOS sinh companding filters. IEEE Trans. Circ. Syst. I. 55(9), 2539–2550 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Psychalinos, C.: Low-voltage complex log-domain filters. IEEE Trans. Circ. Syst. I. 55(11), 3404–3412 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Psychalinos, C.: Log-domain SIMO and MISO low-voltage universal Biquads. Analog Integr. Circ. Sig. Proc. 67(2), 201–211 (2011)CrossRefGoogle Scholar
  7. 7.
    Kasimis, C., Psychalinos, C.: Design of Sinh-Domain filters using comple-mentary operators. Int. J. Circ. Theory Appl. 40(10), 1019–1039 (2012)CrossRefGoogle Scholar
  8. 8.
    Kasimis, C., Psychalinos, C.: 1.2V BiCMOS Sinh-Domain filters. Circ. Syst. Sig. Proc. 31(4), 1257–1277 (2012)CrossRefGoogle Scholar
  9. 9.
    Mulder, J., Serdijn, W.A., van der Woerd, A.C., van Roermund, A.H.M.: “A syllabic companding translinear Filter”, Proc. in IEEE International Symposium Circuits Systems (ISCAS), Hong Kong, pp. 101–104 (1997)Google Scholar
  10. 10.
    Adams, R.W.: “Filtering in the log domain”, Preprint #1470, 63rd AES Conference, New York (1979)Google Scholar
  11. 11.
    Tsirimokou, G., Laoudias, C., Psychalinos C.: 0.5-V fractional-order companding filters. Int. J. Circ. Theory Appl. 43(9), 1105–1126 (2015) Google Scholar
  12. 12.
    Tsirimokou, G., Laoudias, C., Psychalinos, C.: Tinnitus detector realization using sinh-domain circuits. J. Low Power Electron. 9(4), 458–470 (2013)CrossRefGoogle Scholar
  13. 13.
    Kafe, F., Psychalinos, C.: Realization of companding filters with large time-constants for biomedical applications. Analog Integr. Circ. Sig. Process. 78(1), 217–231 (2014)CrossRefGoogle Scholar
  14. 14.
    Pan, J., Tompkins, W.: A real-time QRS detection algorithm. I.E.E.E. Trans. Biomed. Eng. 32(3), 230–236 (1985)CrossRefGoogle Scholar
  15. 15.
    Hamilton, P., Tompkins, W.: Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans. Biomed.l Eng. 33(12), 1157–1165 (1986)CrossRefGoogle Scholar
  16. 16.
    Bailey, J., Berson, A., Garson, A., Horan, L., Macfarlane, P., Mortara, D., et al.: Recommendations for standardization and specifications in automated electrocardiography: bandwidth and digital signal processing. J. Am. Heart Assoc. Circ. 81, 730–739 (1990)Google Scholar
  17. 17.
    Kligfield, P., Gettes, L., Bailey, J., Childers, R., Deal, B., Hancock, W., et al.: Recommendations for the standardization and interpretation of the electrocardiogram part I: the electrocardiogram and its technology. Journal of the American Heart Association Circulation. 115, 1306–1324 (2007)Google Scholar
  18. 18.
    Ferdi, Y., Hebeuval, J., Charef, A., Boucheham, B.: R wave detection using fractional digital differentiation. ITBMRBM. 24(5-6), 273–280 (2003)Google Scholar
  19. 19.
    Goutas, A., Ferdi, Y., Herbeuval, J.P., Boudraa, M., Boucheham, B.: Digital fractional order differentiation-based algorithm for P and T-waves detection and delineation. Int. Arab. J. Inf. Technol. 26(2), 127–132 (2005)Google Scholar
  20. 20.
    Benmalek, M., Charef, A.: Digital fractional order operators for R-wave detection in electrocardiogram signal. IET Sig. Process. 3(5), 381–391 (2009)CrossRefGoogle Scholar
  21. 21.
    Sawigun, C., Serdijn, W.: Ultra-low-power, class-AB. CMOS four-quadrant current multiplier. Electron. Lett. 45(10), 483–484 (2009)CrossRefGoogle Scholar
  22. 22.
    Kasimis, C., Psychalinos, C.: 0.65 V class-AB current-mode four-quadrant multiplier with reduced power dissipation. Int. J. Electron. Commun. 65(7), 673–677 (2011)CrossRefGoogle Scholar
  23. 23.
    Tsirimokou, G., Psychalinos, C., Khanday, F.A., Shah N.A.: 0.5V Sinh-Domain Differentiator. Int. J. Electron. Lett. 3(1), 34–44 (2015)Google Scholar
  24. 24.
  25. 25.
    Cole, K.S.: Permeability and impermeability of cell membranes for ions. Proc. Cold Spring. Harb. Lab. Symp. Quant. Biol. 8, 110–122 (1940)CrossRefGoogle Scholar
  26. 26.
    Freeborn, T.J.: A survey of fractional-order circuits models for biology and biomedicine. IEEE J. Emerging. Sel. Top. Circ. Syst. 3(3), 416–424 (2013)CrossRefGoogle Scholar
  27. 27.
    Maundy, B., Elwakil, A.S.: Extracting single dispersion Cole-Cole imped-ance model parameters using an integrator setup. Analog Int. Circ. Sig. Process. 71(1), 107–110 (2012)CrossRefGoogle Scholar
  28. 28.
    Abbey, C., Joos, G.: Supercapacitor energy storage for wind energy applications. IEEE Trans. Ind. Appl. 43(3), 769–776 (2007)CrossRefGoogle Scholar
  29. 29.
    Pegueroles-Queralt, J., Bianchi, F.D., Gomis-Bellmunt, O.: A power smoothing system based on supercapacitors for renewable distributed generation. IEEE Trans. Ind. Electron. 62(1), 343–350 (2015)CrossRefGoogle Scholar
  30. 30.
    Cao, J., Emadi, A.: A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles. IEEE Trans. Power Electron. 27(1), 122–132 (2012)CrossRefGoogle Scholar
  31. 31.
    Pandey, A., Allos, F., Hu A.P., et al.: “Integration of supercapacitors into wirelessly charged biomedical sensors”, in Proc. Of Sixth IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 56–61 (2011)Google Scholar
  32. 32.
    Kim, S., No, K.S., Chou, P.H.: Design and performance analysis of supercapacitor charging circuits for wireless sensor nodes. IEEE J. Emerging Sel. Top. Circ. Syst. 1(3), 391–402 (2011)CrossRefGoogle Scholar
  33. 33.
    Du, C., Pan, N.: High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology. 17(21), 5314 (2006)CrossRefGoogle Scholar
  34. 34.
    Mahon, P.J., Paul, G.L., Keshishian, S.M., Vassallo, A.M.: Measure-ment and modeling of the higher-power performance of carbon-based supercapacitors. J. Power Sources. 91(1), 68–76 (2000)CrossRefGoogle Scholar
  35. 35.
    Martynyuk, V., Ortigueira, M.: Fractional model of an electrochemical capacitor. Signal Process. 107(2), 355–360 (2015)CrossRefGoogle Scholar
  36. 36.
    Bondarenko, A., Ragoisha, G.: “Progress in Chemometrics Research” (Nova Science, New York, (, 2005)
  37. 37.
    Ahmed, W., Elkhazali, R., Elwakil, A.S.: Fractional-order Wienbridge oscillator. Electron. Lett. 37, 1110–1112 (2001)CrossRefGoogle Scholar
  38. 38.
    Radwan, A., Salama, K.,: Frcational-order RC and RL ciruits. Circuits, Systems and Signal Processing Journal. 31(6), 1901–1915 (2012)CrossRefGoogle Scholar
  39. 39.
    Freeborn, T.J., Maundy, B.J., Elwakil, A.S.: Fractional resonance based filters. Math. Probl. Eng. 726721, 1–10 (2013)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Radwan, A.G., Elwakil, A.S., Soliman, A.M.: Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circ. Syst. I. 55, 2051–2063 (2008)MathSciNetMATHGoogle Scholar
  41. 41.
    Psychalinos, C., Pal, K., Vlassis, S.: A floating generalized impedance converter with current feedback amplifiers. Int. J. Electron. Commun. (AEU). 62, 81–85 (2008)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Georgia Tsirimokou
    • 1
  • Costas Psychalinos
    • 1
  • Ahmed Elwakil
    • 2
    • 3
  1. 1.Physics Department Electronics LaboratoryUniversity of PatrasRio PatrasGreece
  2. 2.Department of Electrical and Computer EngineeringUniversity of SharjahSharjahUnited Arab Emirates
  3. 3.Nanoelectronics Integrated Systems Center (NISC)Nile UniversityCairoEgypt

Personalised recommendations