Voltage-Mode Fractional-Order Filters

  • Georgia Tsirimokou
  • Costas Psychalinos
  • Ahmed Elwakil
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

This chapter presents a voltage-mode technique for realizing fractional-order filters. Low-voltage OTAs are employed as active elements. Fractional-order filters are designed with the additional benefit that different types of filter functions are realized using the same topology. As a result, the resulted filter functions are generalized. Firstly, fractional order lowpass, highpass, allpass, and bandpass filters of order α are realized the efficiency of which is verified through simulations results. In addition, fractional order lowpass, highpass, bandpass, and bandstop filters of order α + β are also given. Both designs employed MOS transistors biased in subthreshold region, offering also the benefit of low voltage operation. The design of these topologies is realized using the AMS 0.35 μm CMOS technology.

Keywords

Fractional-Order Filters Low-Voltage Circuits Voltage-Mode Circuits OTAs 

References

  1. 1.
    Freeborn, T., Maundy, B., Elwakil, A.: Field programmable analogue array implementation of fractional step filters. IET Circ. Dev. Systs. 4(6), 514–524 (2010)CrossRefGoogle Scholar
  2. 2.
    Radwan, A., Soliman, A., Elwakil, A.: First-order filters generalized to the fractional domain. J. Circ. Syst. Comput. 17(1), 55–66 (2008)CrossRefGoogle Scholar
  3. 3.
    Radwan, A., Elwakil, A., Soliman, A.: On the generalization of second-order filters to the fractional-order domain. J. Circ. Syst. Comput. 18(2), 361–386 (2009)CrossRefGoogle Scholar
  4. 4.
    Maundy, B., Elwakil, A., Freeborn, T.: On the practical realization of higher-order filters with fractional stepping. Signal Process. 91(3), 484–491 (2011)CrossRefMATHGoogle Scholar
  5. 5.
    Ahmadi, P., Maundy, B., Elwakil, A., Belostotski, L.: High-quality factor asymmetric-slope band-pass filters: a fractional-order capacitor approach. IET Circ. Dev. Syst. 6(3), 187–197 (2012)CrossRefGoogle Scholar
  6. 6.
    Soltan, A., Radwan, A., Soliman, A.: Fractional-order filter with two fractional elements of dependant orders. Microelectron. J. 43(11), 818–827 (2012)CrossRefGoogle Scholar
  7. 7.
    Radwan, A., Salama, K.: Fractional-order RC and RL circuits. Circ. Syst. Signal Process. 31(6), 1901–1915 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Radwan, A.: Resonance and quality factor of the RLaCa fractional circuit. IEEE J. Emerging Sel. Top. Circ. Syst. 3(3), 377–385 (2013)CrossRefGoogle Scholar
  9. 9.
    Ali, A., Radwan, A., Soliman, A.: Fractional-order Butterworth filter: active and passive realizations. IEEE J. Emerging Sel. Top. Circ. Syst. 3(3), 346–354 (2013)CrossRefGoogle Scholar
  10. 10.
    Tripathy, M., Biswas, K., Sen, S.: A design example of a fractional-order Kerwin–Huelsman–Newcomb biquad filter with two fractional capacitors of different order. Circ. Syst. Signal Process. 32(4), 1523–1536 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Soltan, A., Radwan, A.G., Soliman, A.M.: Fractional order Sallen–Key and KHN filters: stability and poles allocation. Circ. Syst. Signal Process. 34(5), 1461–1480 (2015)CrossRefMATHGoogle Scholar
  12. 12.
    Tripathy, M., Mondal, D., Biswas, K., Sen, S.: Experimental studies on realization of fractional inductors and fractional-order bandpass filters. Int. J. Circ. Theory Appl. 43(9), 1183–1195 (2015)CrossRefGoogle Scholar
  13. 13.
    Tsirimokou, G., Psychalinos, C.: Ultra-low voltage fractional-order differentiator and integrator topologies: an application for handling noisy ECGs. Analog Integr. Circ. Sig. Process. 81(2), 393–405 (2014)CrossRefGoogle Scholar
  14. 14.
    Tsirimokou, G., Laoudias, C., Psychalinos, C.: 0.5V fractional-order companding filters. Int. J. Circ. Theory Appl. 43(9), 1105–1126 (2015a)CrossRefGoogle Scholar
  15. 15.
    Tsirimokou, G., Psychalinos, C.: Ultra-low voltage fractional-order circuits using current-mirrors. Int. J. Circ. Theory Appl. 44(1), 109–126 (2016)CrossRefGoogle Scholar
  16. 16.
    Tsirimokou, G., Psychalinos, C., Elwakil, A.: Emulation of a constant phase element using operational transconductance amplifiers. Analog Integr. Circ. Sig. Process. 85(3), 413–423 (2015)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Georgia Tsirimokou
    • 1
  • Costas Psychalinos
    • 1
  • Ahmed Elwakil
    • 2
    • 3
  1. 1.Physics Department Electronics LaboratoryUniversity of PatrasRio PatrasGreece
  2. 2.Department of Electrical and Computer EngineeringUniversity of SharjahSharjahUnited Arab Emirates
  3. 3.Nanoelectronics Integrated Systems Center (NISC)Nile UniversityCairoEgypt

Personalised recommendations