Procedure for Designing Fractional-Order Filters

  • Georgia Tsirimokou
  • Costas Psychalinos
  • Ahmed Elwakil
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

This chapter presents a systematic procedure for designing fractional-order transfer functions. Fractional-order differentiator, lossless and lossy integrator of order α, and fractional-order filters of any type (i.e., low-pass, high-pass, band-pass, band-stop) of order 1 + α, α + β, and n + α, where n is the integer-order and corresponds to values n ≥ 2, and α is the order of the fractional part (0 < α < 1), are realized by the same core, and therefore this is very important from the flexibility point of view. Functional block diagrams in case of using a voltage-mode or a current - mode technique are presented, while the second-order of CFE is utilized in order to approximate the variable s α .

Keywords

Fractional-order differentiators Fractional-order integrators Fractional-order filters Continued Fraction Expansion 

References

  1. 1.
    Abdelliche, F., Charef, A.: R-peak detection Using a complex fractional wavelet. In: Proceedings of the IEEE International Conference on Electrical and Electronics Engineering (ELECO), pp. 267–270 (2009)Google Scholar
  2. 2.
    Abdelliche, F., Charef, A., Talbi, M., Benmalek, M.: A fractional wave-let for QRS detection. IEEE Inf. Commun. Technol. 1(2), 1186–1189 (2006)Google Scholar
  3. 3.
    Ferdi, Y., Hebeuval, J., Charef, A., Boucheham, B.: R wave detection using fractional digital differentiation. ITBMRBM. 24(5–6), 273–280 (2003)Google Scholar
  4. 4.
    Goutas, A., Ferdi, Y., Herbeuval, J.P., Boudraa, M., Boucheham, B.: Digital fractional order differentiation-based algorithm for P and T-waves detection and delineation. Int. Arab. J. Inf. Technol. 26(2), 127–132 (2005)Google Scholar
  5. 5.
    Benmalek, M., Charef, A.: Digital fractional order operators for R-wave detection in electrocardiogram signal. IET Signal Process. 3(5), 381–391 (2009)CrossRefGoogle Scholar
  6. 6.
    Radwan, A., Soliman, A., Elwakil, A.: First-order filters generalized to the fractional domain. J. Circuits Syst. Comput. 17(1), 55–66 (2008)CrossRefGoogle Scholar
  7. 7.
    Tsirimokou, G., Psychalinos, C.: Ultra-low voltage fractional-order differentiator and integrator topologies: an application for handling noisy ECGs. Analog Integr. Circ. Sig. Process. 81(2), 393–405 (2014)CrossRefGoogle Scholar
  8. 8.
    Maundy, B., Elwakil, A., Freeborn, T.: On the practical realization of higher-order filters with fractional stepping. Signal Process. 91(3), 484–491 (2011)CrossRefMATHGoogle Scholar
  9. 9.
    Freeborn, T., Maundy, B., Elwakil, A.: Field programmable analogue array implementation of fractional step filters. IET Circuits Devices Syst. 4(6), 514–524 (2010)CrossRefGoogle Scholar
  10. 10.
    Ortigueira, M.: An introduction to the fractional continuous-time linear systems: the 21st century systems. IEEE Circuits Syst. Mag. 8(3), 19–26 (2008)CrossRefGoogle Scholar
  11. 11.
    Elwakil, A.: Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 10(4), 40–50 (2010)CrossRefGoogle Scholar
  12. 12.
    Biswas, K., Sen, S., Dutta, P.: Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Trans. Circuits Syst. II Express Briefs. 53(9), 802–806 (2006)CrossRefGoogle Scholar
  13. 13.
    Krishna, B., Reddy, K.: Active and passive realization of fractance device of order ½. Act. Passive Electron. Compon. 2008, Article ID 369421 (2008)Google Scholar
  14. 14.
    Radwan, A., Elwakil, A., Soliman, A.: On the generalization of second-order filters to the fractional-order domain. J. Circuits Syst. Comput. 18(2), 361–386 (2009)CrossRefGoogle Scholar
  15. 15.
    Freeborn, T., Maundy, B., Elwakil, A.: Towards the realization of fractional step filters. In: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1037–1040 (2010)Google Scholar
  16. 16.
    Mondal, D., Biswas, K.: Performance study of fractional order integra-tor using single-component fractional order element. IET Circuits Devices Syst. 5(4), 334–342 (2011)CrossRefGoogle Scholar
  17. 17.
    Radwan, A., Salama, K.: Fractional-order RC and RL circuits. Circuits Syst. Signal Process. 31(6), 1901–1915 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ahmadi, P., Maundy, B., Elwakil, A., Belostotski, L.: High-quality fac-tor asymmetric-slope band-pass filters: a fractional-order capacitor approach. IET Circuits Devices Syst. 6(3), 187–197 (2012)CrossRefGoogle Scholar
  19. 19.
    Ali, A., Radwan, A., Soliman, A.: Fractional order Butterworth filter: active and passive realizations. IEEE J. Emerging Sel. Top. Circuits Syst. 3(3), 346–354 (2013)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Georgia Tsirimokou
    • 1
  • Costas Psychalinos
    • 1
  • Ahmed Elwakil
    • 2
    • 3
  1. 1.Physics Department Electronics LaboratoryUniversity of PatrasRio PatrasGreece
  2. 2.Department of Electrical and Computer EngineeringUniversity of SharjahSharjahUnited Arab Emirates
  3. 3.Nanoelectronics Integrated Systems Center (NISC)Nile UniversityCairoEgypt

Personalised recommendations