Skip to main content

Βeta-Lactams as Clinically Active Medicines

  • Chapter
  • First Online:
Beta-Lactams

Abstract

The clinical use of diverse β-lactams as antibiotics is continued to grow as the main weapon against bacterial diseases. Since the discovery of penicillins, other β-lactam antibiotics are discovered and they save millions of life. Importantly, β-lactams are also used as medicines for different types of medical disorders. Some of them are found to be anticancer agents, anticholesterol agents. Because of the tremendous medicinal properties, many studies are directed to identify their mechanism of action against these diseases. Despite the significant importance of clinically active β-lactams no description covering their use and resistance in recent years is performed. Therefore, we report here the medical use of β-lactams as therapeutic agents with the understanding that researchers may find this chapter useful in their endeavor in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Banik BK, Jayaraman M, Srirajan V, Manhas MS, Bose AK (1997) Rapid synthesis of β-lactams as intermediates for natural products via eco-friendly reactions. J Ind Chem Soc 74:943–947; (b) Mohamed H, Banik BK (2011) Vinyl β-lactams: mechanism of their formation. Heterocycl Lett 23–26; (c) Banik BK, Manhas MS, Newaz SN, Bose AK (1993) Facile preparation of carbapenem synthons via microwave-induced rapid reaction. Bioorg Med Chem Lett 3:2363–2368; (d) Bandyopadhyay D, Yanez MA, Banik BK (2011) Microwave-induced stereoselectivity of β-Lactam formation, effects of solvents. Heterocycl Lett 65–67; (e) Manhas MS, Banik BK, Mathur A, Vincent J, Bose AK (2000) Microwave-assisted synthesis of vinyl β-lactam: synthons for natural products. In: Tetrahedron symposium-in-print, vol 56, pp 5587–5601

    Google Scholar 

  2. (a) Banik I, Becker FF, Banik BK (2003) Stereoselective synthesis of β-lactams with polyaromatic imines: entry to new and novel anticancer agents. J Med Chem 46:12–15; (b) Banik BK, Becker FF, Banik I (2004) Synthesis of anticancer β-lactams: mechanism of action. Bioorg Med Chem 12:2523–2528; (c) Banik BK, Becker FF (2010) Selective anticancer activity of β-lactams derived from polyaromatic compound. Mol Med Rep 3:315–316; (d) Banik BK. (2012) Curious science: ringing the changes for cancer. Int Innovation 114–116; (e) Banik BK. (2014) Anticancer β-lactams and related investigations: synthesis and biological evaluation. J Ind Chem Soc 91:1837–1860; (f) Becker FF, Banik BK (2015) Polycyclic β-lactam derivatives for the treatment of cancer. US Patent, Number US8946409

    Google Scholar 

  3. Steffee CH (1992) Alexander Fleming and penicillin. The chance of a lifetime? N C Med J 53:308–310

    CAS  Google Scholar 

  4. Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenza. Br J Exp Pathol 10:226–236

    CAS  Google Scholar 

  5. Hare R (1982) New light on the history of penicillin. Med His 26:1–24

    Article  CAS  Google Scholar 

  6. Resistance Antibiotic (2010) Implications for global health and novel intervention strategies: workshop summary. The National Academies Press, Washington, DC, p 496

    Google Scholar 

  7. Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22:161–182

    Article  CAS  Google Scholar 

  8. Fleming A (1943) Streptococcal meningitis treated with penicillin. Measurement of bacteriostatic power of blood and cerebrospinal fluid. Lancet 2:434–438

    Article  Google Scholar 

  9. Florey HW, Florey ME (1943) General and local administration of penicillin. JAMA 1:387–397

    Google Scholar 

  10. Hobby GL, Meyer K, Chaffee E (1942) Chemotherapeutic activity of penicillin. Proc Soc Exp Biol Med 50:285–288

    Article  CAS  Google Scholar 

  11. Keefer CS, Blake FG, Marshall ER, Lockwood JS, Wood WB (1943) Penicillin in the treatment of infections. A report of 500 cases. Statement by the committee on chemotherapeutic and other agents, Division of medical sciences. National research council. JAMA 122:1217–1244

    Article  CAS  Google Scholar 

  12. Rammelkamp CH, Keefer CS (1943) The absorption, excretion, and distribution of penicillin. J Clin Invest 22:425–437

    Article  CAS  Google Scholar 

  13. Rammelkamp CH, Keefer CS (1943) Penicillin: its antibacterial effect in whole blood and serum for the hemolytic streptococcus and staphylococcus aureus. J Clin Invest 22:649–657

    Article  CAS  Google Scholar 

  14. Chain E (1979) The early years of the penicillin discovery. Trends Pharmacol Sci J 1:6–11

    Google Scholar 

  15. Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Nature 146:837

    Article  CAS  Google Scholar 

  16. Abraham EP, Chain E, Fletcher CM, Florey HW, Gardner AD, Heatley NG et al (1941) Further observations on penicillin. Eur J Clin Pharmacol 42:3–9

    Google Scholar 

  17. Crowfoot D, Bunn CW, Rogers-Low BW, Turner-Jones A (1949) In: Clarke HT, Johnson JR, Robinson R (eds) The chemistry of penicillin. Princeton University Press, Princeton, NJ, USA, pp 310–367

    Google Scholar 

  18. Henderson JW (1997) The yellow brick road to penicillin: a story of serendipity. Mayo Clin Proc 72:683–687

    Article  CAS  Google Scholar 

  19. Butler MS, Blaskovich MA, Cooper MA (2013) Antibiotics in the clinical pipeline in 2013. J Antibiot 66:571–591

    Article  CAS  Google Scholar 

  20. Abraham EP, Newton GGF (1961) The structure of cephalosporin C. Biochem J 79:377–393

    Article  CAS  Google Scholar 

  21. Nagarajan R, Boeck LD, Gorman M, Hamill RL, Higgens CE, Hoehn MM et al (1971) Beta-lactam antibiotics from streptomyces. J Am Chem Soc 93:2308–2310

    Article  CAS  Google Scholar 

  22. Imada A, Kitano K, Kintaka K, Muroi M, Asai M (1981) Sulfazecin and isosulfazecin, novel betalactam antibiotics of bacterial origin. Nature 12:289(5798):590–591

    Google Scholar 

  23. Votsch W, Templin MF (2000) Characterization of a beta-N-acetylglucosaminidase of escherichia coli and elucidation of its role in muropeptide recycling and beta-lactamase induction. J Biol Chem 275:39032–39038

    Article  CAS  Google Scholar 

  24. Blum LC, Reymond JL (2009) 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J Am Chem Soc 131:8732

    Google Scholar 

  25. Hajduk PJ, Galloway WRJD, Spring DR (2011) Drug discovery: a question of library design. Nature 470:42–43

    Article  CAS  Google Scholar 

  26. Murray CW, Rees DC (2009) The rise of fragment-based drug discovery. Nat Chem (3):187–192

    Google Scholar 

  27. Wender PA, Verma VA, Paxton TJ, Pillow TH (2008) Function-oriented synthesis, step economy, and drug design. Acc Chem Res 41(1):40–49

    Article  CAS  Google Scholar 

  28. Testero SA, Fisher JF, Mobashery S (2010) β-lactam antibiotics. In: Abraham DJ, Rotella DP (eds) Burger’s Medicinal chemistry, drug discovery and development, vol 7 (Antiinfectives). Wiley, pp 259–404

    Google Scholar 

  29. Page MI (1999) The reactivity of β-lactams, the mechanism of catalysis and the inhibition of β-lactamases. Curr Pharm Des 5:895–913

    CAS  Google Scholar 

  30. Page MI, Laws AP (2000) The chemical reactivity of β-lactams, β-sultams and β-pospholactams. Tetrahedron 56:5631–5638

    Article  CAS  Google Scholar 

  31. Shlaes DM (2010) Antibiotics: the perfect storm. Springer Dordrec, Heidelberg, London, NY, USA

    Book  Google Scholar 

  32. Pendleton JN, Gorman SP, Gilmore BF (2013) Clinical relevance of the escape pathogens. Expert Rev Anti-Infect Ther 1:297–308

    Google Scholar 

  33. Williamson R, Collatz E, Gutmann L (1986) Mechanisms of action of beta-lactam antibiotics and mechanisms of non-enzymatic resistance. 20;15(46):2282–2289

    Google Scholar 

  34. Page MI (1987) The mechanisms of reactions of β-lactam antibiotics. Adv Phys Org Chem 23:165–270

    CAS  Google Scholar 

  35. Imada A, Kitano K, Kintaka K, Muroi M, Asai M (1981) Sulfazecin and isosulfazecin, novel betalactam antibiotics of bacterial origin. Nature 289:590–591

    Article  CAS  Google Scholar 

  36. Sykes RB, Cimarusti CM, Bonner DP, Bush K, Floyd DM, Georgopapadakou NH et al (1981) Monocyclic beta-lactam antibiotics produced by bacteria. Nature 291:489–491

    Article  CAS  Google Scholar 

  37. Zapun A, Contreras-Martel C, Vernet T (2008) Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 32:361–385

    Article  CAS  Google Scholar 

  38. Akindele AA, Adewuyi IK, Adefioye OA, Adedokun SA, Olaolu AO (2010) Antibiogram and beta-lactamase of staphylococcus aureus isolates from different human clinical specimens in a tertiary health institution in Ile-Ife, Nigeria. Am Eurasian J Sci Res 5(4):230–233

    Google Scholar 

  39. Massova I, Mobashery S (1997) Molecular bases for interactions between β-lactam antibiotics and β-lactamases. Acc Chem Res 1997(30):162–168

    Article  Google Scholar 

  40. Andersson DI (2003) Persistence of antibiotic resistant bacteria. Curr Opin Microb 6(5):452–456

    Article  CAS  Google Scholar 

  41. Lowy FD (2003) Antimicrobial resistance: the example of staphylococcus aureus. J Clin Invest 3(9):1265–1273

    Article  Google Scholar 

  42. Wilke MS, Lovering AL, Strynadka CJN (2005) β-lactam antibiotic resistance: a current structural perspective. Curr Opinion Microbiol 8:525–533

    Article  CAS  Google Scholar 

  43. Bush K, Mobashery S (1998) In: Rosen BP, Mobashery S (eds) Resolving the antibiotic paradox: progress in understanding drug resistance and development of new antibiotics. Plenum Press, New York, NY, USA, pp 71–98

    Google Scholar 

  44. Gardner AD (1940) Morphological effects of penicillin on bacteria. Nature 146:837–838

    Article  Google Scholar 

  45. Eleftheriadou I, Tentolouris N, Argiana V, Jude E, Boulton AJ (2010) Methicillin-resistant staphylococcus aureus in diabetic foot infections. Drugs 70:1785–1797

    Article  CAS  Google Scholar 

  46. Kallen AJ, Srinivasan A (2010) Current epidemiology of multidrug-resistant gram-negative bacilli in the United States. Infect Control Hosp Epidemiol 31:S51–S54

    Article  Google Scholar 

  47. Boerlin P and White DG (2006) In: Giguère S, Prescott JF, Baggot JD, Walker RD, Dowling PM (eds) Antimicrobial resistance and its epidemiology. Antimicrobial therapy in veterinary medicine, 4th ed. Blackwell Publishing, Ames Iowa, USA

    Google Scholar 

  48. Giakkoupi P, Tzelepi E, Legakis NJ, Tzouvelekis LS (1998) Substitution of Arg-244 by Cys or Ser in SHV-1 and SHV-5 β-lactamases confers resistance to mechanism-based inhibitors and reduces catalytic efficiency of the enzymes. FEMS Microbiol Lett 160:49–54

    CAS  Google Scholar 

  49. Gin A, Dilay L, Karlowsky JA, Walkty A, Rubinstein E, Zhanel GG (2007) Piperacillin-tazobactam: a β-lactam/β-lactamase inhibitor combination. Expert Rev Anti-Infect Ther 5:365–383

    Article  CAS  Google Scholar 

  50. Guardabassi L, Courvalin P (2006) In: Aarestrup FM (ed) Modes of antimicrobial action and mechanisms of bacterial resistance. Antimicrobial resistance in bacteria of animal origin. ASM Press, Washington, DC, USA

    Google Scholar 

  51. Syrigos KN, Epenetos AA (1999) Antibody directed enzyme prodrug therapy (ADEPT): a review of the experimental and clinical considerations. Anticancer Res 19:605–613

    CAS  Google Scholar 

  52. Shlaes DM (2013) New β-lactam–β-lactamase inhibitor combinations in clinical development. Ann N Y Acad Sci 1277:105–114

    Article  CAS  Google Scholar 

  53. Senter PD (2001) Selective activation of anticancer prodrugs by monoclonal antibody-enzyme conjugates. C J Adv Drug Deliv Rev 53:247

    Article  CAS  Google Scholar 

  54. Alderson RF, Toki BE, Roberge M, Geng W, Basler J, Chin R, Liu A, Ueda R, Hodges D, Escandon E, Chen T, Kanavarioti T, Babé L, Senter PD, Fox JA, Schellenberger V (2006) Characterization of a CC49-based single-chain fragment-beta-lactamase fusion protein for antibody-directed enzyme prodrug therapy (ADEPT). Bioconjug Chem 17:410

    Google Scholar 

  55. Meyer DL, Jungheim LN, Law KL, Mikolajczyk SD, Sherpherd TA, Mackensen DG, Briggs SL, Starling JJ (1993) Cancer Res 53:3956

    CAS  Google Scholar 

  56. Vrudhula VM, Svensson HP, Kennedy PD, Senter PM, Wallace PM (1993) Antitumor activities of a cephalosporin prodrug in combination with monoclonal antibody-beta-lactamase conjugates. Bioconjug Chem 4:334–340

    Article  CAS  Google Scholar 

  57. Rodrigues ML, Carter P, Wirth C, Mullins S, Lee A, Blackburn BK (1995) Synthesis and beta-lactamase-mediated activation of a cephalosporin-taxol prodrug. Chem Biol 2:223

    Article  CAS  Google Scholar 

  58. Svensson HP, Kadow JF, Vrudhula VM, Wallace PM, Senter PD (1992) Monoclonal antibody-beta-lactamase conjugates for the activation of a cephalosporin mustard prodrug. Bioconjug Chem 3(2):176–181

    Google Scholar 

  59. Vrudhula VM, Kerr DE, Siemers NO, Dubowchik GM, Senter PD (2003) Cephalosporin prodrugs of paclitaxel for immunologically specific activation by L-49-sFv-beta-lactamase fusion protein. Bioorg Med Chem Lett 13:539–542

    Article  CAS  Google Scholar 

  60. Svensson HP, Frank IS, Berry KK, Senter PD (1998) Therapeutic effects of monoclonal antibody-beta-lactamase conjugates in combination with a nitrogen mustard anticancer prodrug in models of human renal cell carcinoma. J Med Chem 23;41(9):1507–1512

    Google Scholar 

  61. Teicher BA (2009) Antibody-drug conjugate targets. Curr Cancer Drug Targets 9(8):982–1004

    Article  CAS  Google Scholar 

  62. Veinberg G, Shestakova I, Vorona M, Kanepe I, Domrachova I, Lukevics E (2004) Synthesis of antitumor 6-alkylidenepenicillanate sulfones and related 3-alkylidene-2-azetidinones. Bioorg Med Chem Lett 14:147–150

    Article  CAS  Google Scholar 

  63. Ejim L, Farha MA, Falconer SB, Wildenhain J, Coombes BK, Tyers M et al (2011) Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol 7:348–350

    Article  CAS  Google Scholar 

  64. Engel D, Nudelman A, Tarasenko N, Levovich I, Makarovsky I, Sochotnikov S, Tarasenko I, Rephaeli A (2008) Novel prodrugs of tegafur that display improved anticancer activity and antiangiogenic properties. J Med Chem 24;51(2):314–323

    Google Scholar 

  65. Drawz SM, Papp-Wallace KM, Bonomo RA (2014) New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother 58:1835–1846

    Article  Google Scholar 

  66. Laible G, Spratt BG, Hakenbeck R (1991) Interspecies recombinational events during the evolution of altered PBP 2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Mol Microbiol 5:1993–2002

    Article  CAS  Google Scholar 

  67. Taylor PL, Rossi L, De Pascale G, Wright GD (2012) A forward chemical screen identifies antibiotic adjuvants in Escherichia coli. ACS Chem Biol 7:1547–1555

    Article  CAS  Google Scholar 

  68. Drawz SM, Bonomo RA (2010) Three decades of beta-lactamase inhibitors. Clin Microbiol Rev 23:160–201

    Article  CAS  Google Scholar 

  69. Laible G, Spratt BG, Hakenbeck R, Bush LM, Johnson CC (2000) Ureidopenicillins and β-lactam/β-lactam inhibitor combinations. Infect Dis Clin North Am 14:409–433

    Article  Google Scholar 

  70. Li XZ, Zhang L, Poole K (2000) Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. J Antimicrob Chemother 45:433–436

    Article  CAS  Google Scholar 

  71. Livermore DM (1998) β-lactamase-mediated resistance and opportunities for its control. J Antimicrob Chemother 41(Suppl. D):25–41

    Google Scholar 

  72. Foulds G, Barth WE, Bianchine JR, English AR, Girard D, Hayes SL, O’Brien M, Somani P (1980) Pharmacokinetics of CP-45.899 and pro-drug CP-47.904 in animals and humans. In: Nelson JD, Grassi C (eds) Current chemotherapy and infectious disease. American Society for Microbiology, Washington, DC, pp 353–356

    Google Scholar 

  73. Campoli-Richards DM, Brogden RN (1987) Sulbactam/ampicillin. A review of its antibacterial activity, pharmacokinetic properties, and therapeutic use. Drugs 33:577–609

    Article  CAS  Google Scholar 

  74. Akova M (2008) Sulbactam-containing β-lactamase inhibitor combinations. Clin Microbiol Infect 14(Suppl. 1):185–188

    Article  CAS  Google Scholar 

  75. Cynamon MH, Swenson CE, Palmer GS, Ginsberg RS (1989) Liposome-encapsulated-amikacin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother 33(8):1179–1183

    Article  CAS  Google Scholar 

  76. Dijkstra J, van Galen M, Regts D, Scherphof G (1985) Uptake and processing of liposomal phospholipids by Kupffer cells in vitro. Eur J Biochem 148(2):391–397

    Article  CAS  Google Scholar 

  77. Ellner JJ, Goldberger MJ, Parenti DM (1991) Mycobacterium avium infection and AIDS: a therapeutic dilemma in rapid evolution. J Infect Dis 163(6):1326–1335

    Article  CAS  Google Scholar 

  78. Gangadharam PR, Ashtekar DA, Ghori N, Goldstein JA, Debs RJ, Duzgunes N (1991) Chemotherapeutic potential of free and liposome encapsulated streptomycin against experimental Mycobacterium avium complex infections in beige mice. J Antimicrob Chemother 28(3):425–435

    Article  CAS  Google Scholar 

  79. Coune A (1988) Liposomes as drug delivery system in the treatment of infectious diseases. Potential applications and clinical experience. Infection 16(3):141–147

    Article  CAS  Google Scholar 

  80. Kelly C, Jefferies C, Cryan SA (2011) Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv 2011:11

    Article  Google Scholar 

  81. Khuller GK, Kapur M, Sharma S (2004) Liposome technology for drug delivery against mycobacterial infections. Curr Pharm Des 10(26):3263–3274

    Article  CAS  Google Scholar 

  82. Yanagihara K (2012) Design of anti-bacterial drug and anti-mycobacterial drug for drug delivery system. Curr Pharm Des 8(6):475–482

    Article  Google Scholar 

  83. Gangadharam PR, Ashtekar DA, Ghori N, Goldstein JA, Debs RJ, Duzgunes N (1991) Chemotherapeutic potential of free and liposome encapsulated streptomycin against experimental Mycobacterium avium complex infections in beige mice. J Antimicrob Chemother 3:425–435

    Article  Google Scholar 

  84. Patton JS, Fishburn CS, Weers JG (2004) The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc 1(4):338–344

    Article  CAS  Google Scholar 

  85. Yanagihara K (2002) Design of anti-bacterial drug and anti-mycobacterial drug for drug delivery system. Curr Pharm Des 8(6):475–482

    Article  CAS  Google Scholar 

  86. Lutwyche P, Cordeiro C, Wiseman DJ, St-Louis M, Uh M, Hope MJ et al (1998) Intracellular delivery and antibacterial activity of gentamicin encapsulated in pH-sensitive liposomes. Antimicrob Agents Chemother 42(10):2511–2520

    CAS  Google Scholar 

  87. Yoshimura F, Nikaido H (1985) Diffusion of β -lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob Agents Chemother 27:84–92

    Article  CAS  Google Scholar 

  88. Hakimelahi GH, Shia K, Xue C et al (2002) Design, synthesis, and biological evaluation of a series of β -lactam-based prodrugs. Bioorg Med Chem 10:3489–3498

    Article  CAS  Google Scholar 

  89. Kazmierczak A, Cordin X, Jduez JM et al (1990) Differences between clavulanic acid and sulbactam in induction and inhibition of cephalosporinases in enterobacteria. J Int Med Res 18:D67–D77

    Google Scholar 

  90. Livermore DM, Akova M, Wu PJ, Yang YJ (1989) Clavulanate and β-lactamase induction. J Antimicrob Chemother 24(Suppl B):23–33

    Article  CAS  Google Scholar 

  91. Li Q, Lee JY, Castillo R et al (2002) NB2001, a novel antibacterial agent with broad-spectrum activity and enhanced potency against β-lactamase producing strains. Antimicrob Agents Chemother 46:1262–1268

    Article  CAS  Google Scholar 

  92. Stone GW, Zhang Q, Castillo R et al (2004) Mechanism of action of NB2001 and NB2030, novel antibacterial agents activated by β-lactamases. Antimicrob Agents Chemother 48:477–483

    Article  CAS  Google Scholar 

  93. Wang Y, Lambart P, Zhao L, Wang D (2002) Synthesis and antibacterial activity of dual-action agents of a β-lactam antibiotic with cytotoxic agent mitozolomide or temozolomide. Eur J Med Chem 37:323–332

    Article  CAS  Google Scholar 

  94. Hakimelahi GH, Moosavi-Movahedi AK, Saboury AA et al (2005) Carbapenem-based prodrugs. Design, synthesis, and biological evaluation of carbapenems. Eur J Med Chem 40:339–349

    Article  CAS  Google Scholar 

  95. Couvreur P, Fattal E, Alphandary H et al (1992) Intracellular targeting of antibiotics by means of biodegradable nanoparticles. Seminal studies on the use of ampicillin-attached nanoparticles for intracellular bacterial infections. J Control Release 19:259–267

    Article  CAS  Google Scholar 

  96. (a) Basu S, Maji P, Ganguly J (2015) Biosynthesis, characterisation and antimicrobial activity of silver and gold nanoparticles by Dolichos biflorus Linn seed extract. J Exper Nanosci doi:10.1080/17458080.2015.1112042

  97. Huguette PA, Andremont A, Couvreur P (2000) Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents 13:155–168

    Article  Google Scholar 

  98. Prior S, Gamazo C, Irache JM et al (2000) Gentamicin encapsulation in PLA/PLGA microspheres in view of treating Brucella infections. Int J Pharm 196:115–125

    Google Scholar 

  99. Santos-Magalhaes NS, Pontes A, Pereira VMW, Caetano MNP (2000) Colloidal carriers for benzathine penicillin G: nanoemulsions and nanocapsules. Int J Pharm 208:271

    Article  Google Scholar 

  100. Jani P, Halbert GW, Langridge J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42:821–826

    Article  CAS  Google Scholar 

  101. Jani P, Halbert GW, Langridge J, Florence AT (1989) The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol 41:809–812

    Article  CAS  Google Scholar 

  102. Taton AT, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760

    Article  CAS  Google Scholar 

  103. Prime KL, Whitesides GM (1991) Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252:1164–1767

    Article  CAS  Google Scholar 

  104. Diaz HVR, Batdorf KH, Fianchinin M et al (2006) Antimicrobial properties of highly fluorinated silver(I) tris(pyrazolyl)borates. J Inorg Biochem 100:158–160

    Google Scholar 

  105. Balogh L, Swanson DR, Tomalia DA et al (2001) Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 1:18–21

    Google Scholar 

  106. Ramstedt M, Cheng N, Azzaroni O et al (2007) Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications. Langmuir 23:3314–3321

    Google Scholar 

Download references

Acknowledgements

BKB is enormously grateful to Professor A. K. Bose, Professor M. S. Manhas, Professor F. F. Becker, M. Negi (Ph.D.), N. Lavlinskaia (Ph.D.), Ms. I. Banik (M.Sc.; M.S.), A. Ghatak (Ph.D.), S. Samajdar (Ph.D.), D. Bandyopadhya (Ph.D.) and A. Shaikh (Ph.D.). The contribution of other scientists is mentioned in the reference section. SB is grateful to Dr Koustav Sinha (Ph.D.). Despite efforts, we could not cite all pertinent references. The authors apologizes to contributors whose references is not cited. BKB and SB is also grateful to NIH, NCI, Kleberg Foundation of Texas, Stevens Institute of Technology, University of Texas M. D. Anderson Cancer Center, University of Texas Health Science Center at San Antonio, University of Texas-Pan American and Indian Institute of Engineering Science and Technology for their support to their research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimal K. Banik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Basu, S., Banik, B.K. (2017). Βeta-Lactams as Clinically Active Medicines. In: Banik, B. (eds) Beta-Lactams. Springer, Cham. https://doi.org/10.1007/978-3-319-55621-5_9

Download citation

Publish with us

Policies and ethics