Skip to main content

Nanochemistry in Drug Design

  • Chapter
  • First Online:
Beta-Lactams

Abstract

Traditional antimicrobial therapy used today at clinics is mainly focused on application of developed several decades ago several classes of small chemically modified organic compounds of natural origin, e.g. penicillins, cephalosporins, macrolides, fluoroquinolones, etc. The efficacy of these drugs is declining due to spreading of antibiotic resistance around the microbial world. Herein, we examine current strategies of designing new antimicrobials as nanotechnology-based pharmaceutical drug delivery platforms. We address several problems like synergistic action of β-lactams and nanoparticles, nanoparticles self-cytotoxicity, perspectives of targeted drug delivery and application of “green” chemistry, vital for the prospective production of β-lactams nanoformulations with enhanced efficacy and low toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 57:1451–1470

    Article  CAS  Google Scholar 

  2. Okuma K, Iwakawa K, Turnidge JD (2002) Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol 40:4289–4294

    Article  CAS  Google Scholar 

  3. Athamna A, Athamna M, Nura A, Shlyakov E, Bast DJ, Farrell D, Rubinstein E (2005) Is in vitro antibiotic combination more effective than single-drug therapy against Anthrax? Antimicrob Agents Chemother 49:1323–1325

    Article  CAS  Google Scholar 

  4. Tin S, Sakharkar KR, Lim CS, Sakharkar MK (2009) Activity of Chitosans in combination with antibiotics in Pseudomonas aeruginosa. Int J Biol Sci 5:153–160

    Article  CAS  Google Scholar 

  5. de Hoog M, Mouton JW, van den Anker JN (2005) New dosing strategies for antibacterial agents in the neonate. Sem in Fetal Neonat Med 10:185–194

    Article  Google Scholar 

  6. Caminade A-M, Ouali A, Laurent R, Turrinab C-O, Majoral J-P (2015) The dendritic effect illustrated with phosphorus dendrimers. Chem Soc Rev 44:3890–3899

    Article  CAS  Google Scholar 

  7. Delort E, Darbre T, Reymond JL (2004) A strong positive dendritic effect in a peptide dendrimer-catalyzed ester hydrolysis reaction. J Am Chem Soc 126:15642–15643

    Article  CAS  Google Scholar 

  8. Yang H, Lopina ST (2003) Penicillin V-conjugated PEG-PAMAM star polymers. J Biomater Sci Polymer Edn 14:1043–1056

    Article  CAS  Google Scholar 

  9. Janiszewska J, Swieton J, Lipkowski AW, Urbanczyk-Lipkowska Z (2003) Low molecular mass peptide dendrimers that express antimicrobial properties. Bioorg Med Chem Lett 13:3711–3713

    Article  CAS  Google Scholar 

  10. Polcyn P, Jurczak M, Rajnisz A, Solecka J, Urbanczyk-Lipkowska Z (2009) Design of Antimicrobially Active Small Amphiphilic Peptide Dendrimers. Molecules 14:3881–3905

    Article  CAS  Google Scholar 

  11. Anderson JW, Pratt RF (2000) Dipeptide binding to the extended active site of the Streptomyces R61 D-alanyl-D-alanine-peptidase: the path to a specific substrate. Biochemistry 39:12200–12209

    Article  CAS  Google Scholar 

  12. Anderson JW, Adediran SA, Charlier P, Nguyen-Distèche M, Frère J-M, Nicholas RA, Pratt RF (2003) On the substrate specificity of bacterial DD-peptidases: evidence from two series of peptidoglycan-mimetic peptides. Biochem J 373:949–955

    Article  CAS  Google Scholar 

  13. Josephine HR, Kumar I, Pratt RF (2004) The perfect penicillin? Inhibition of a bacterial DD-peptidase by peptidoglycan-mimetic β-lactams. J Am Chem Soc 126:8122–8123

    Article  CAS  Google Scholar 

  14. Bodanszky M, Bodanszky A (1984) The practice of peptide synthesis. Springer, Berlin

    Book  Google Scholar 

  15. Lin Y-M, Miller MJ (2001) Oxidation of primary amines to oxaziridines using molecular oxygen (O2) as the ultimate oxidant. J Org Chem 66:8282–8285

    Article  CAS  Google Scholar 

  16. Manhas MS, Gala K, Bari SS, Bose AK (1983) A convenient synthesis of esters of 6-aminopenicillanic acid. Synthesis 549–552

    Google Scholar 

  17. Keller O, Keller WE, van Look G, Wersin G (1985) Tert-butoxycarbonylation of amino acids and their derivatives: N-tert-butoxycarbonyl-phenylalanine. Org Synth 63:160–170

    Article  CAS  Google Scholar 

  18. CLSI. (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. M07-A7, M100-S17. CLSI, Wayne, Pa

    Google Scholar 

  19. Frère JM, Leyh-Bouille M, Ghuysen JM, Nieto M, Perkins HR (1976) Exocellular DD-carboxypeptidases-transpeptidases from Streptomyces. Methods Enzymol 45:610–636

    Article  Google Scholar 

  20. Solecka J, Kurzatkowski W (1999) Affinity of exocellular DD-carboxypeptidase/transpeptidase from Saccharopolyspora erythraea PZH TZ 64-575 strain to beta-lactam compounds. Med Dosw Mikrobiol 51:151–165

    CAS  Google Scholar 

  21. Denkewalter RG, Kolc J, Lukasavage WJ (1981) (Allied Corp), US4289872

    Google Scholar 

  22. Tam JP, Lu Y-A, Yang J-L (2002) Antimicrobial dendrimeric peptides. Eur J Biochem 269:923–932

    Article  CAS  Google Scholar 

  23. Micetich RG, Raap R, Howard J, Pushkas I (1972) Antibacterial activity of 6-(5-membered heteroarylacetamido) penicillanic acids. J Med Chem 15:333–335

    Google Scholar 

  24. Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds. Wiley, New York

    Google Scholar 

  25. Janiszewska J, Urbanczyk-Lipkowska Z (2007) Amphiphilic dendrimeric peptides as model non-sequential pharmacophores with antimicrobial properties. J Mol Microbiol Biotechnol 13:220–225

    Article  CAS  Google Scholar 

  26. Varetto L, De Meester F, Monnaie D, Marchand-Brynaert J, Dive G, Jacob F, Frère JM (1991) The importance of the negative charge of beta-lactam compounds in the interactions with active-site serine DD-peptidases and beta-lactamases. Biochem J 278:801–807

    Article  CAS  Google Scholar 

  27. Turos E, Reddy GSK, Greenhalgh K, Ramaraju P, Abeylath SC, Jang S, Dickey S, Lim DV (2007) Penicillin-bound polyacrylate nanoparticles: restoring the activity of β-lactam antibiotics against MRSA. Bioorg Med Chem Lett 17:3468–3472

    Article  CAS  Google Scholar 

  28. Micetich RG, Raap R, Howard J, Pushkas I (1972) Antibacterial activity of 6-(5-membered heteroarylacetamido) penicillanic acids. J Med Chem 15:333–335

    Article  CAS  Google Scholar 

  29. Yariv I, Lipovsky A, Gedanken A, Lubart R, Fixler D (2015) Enhanced pharmacological activity of Vitamin B12 and Penicillin as nanoparticles. Int J Nanomedicine 10:3593–3601

    CAS  Google Scholar 

  30. Fernandes R, Smyth NR, Muskens OL, Nitti S, Heuer-Jungemann A, Ardern-Jones MR, Kanaras AG (2015) Interactions of Skin with Gold Nanoparticles of Different Surface Charge, Shape, and Functionality. SMALL 6:713–721

    Article  Google Scholar 

  31. Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliver Rev 60:1278–1288

    Article  CAS  Google Scholar 

  32. Mamaeva V, Sahlgren C, Linden M (2013) Mesoporous silica nanoparticles in medicine—recent advances. Adv Drug Delivery Rev 65:689–702

    Article  CAS  Google Scholar 

  33. Wang L, Chen YP, Miller KP, Cash BM, Jones S, Glenn S, Benicewicz BC, Decho AW (2014) Functionalised nanoparticles complexed with antibiotic efficiently kill MRSA and other bacteria. Chem Commun 50:12030–12033

    Article  CAS  Google Scholar 

  34. Salavati-Niasari M, Javidi J, Dadkhah M (2013) Ball Milling Synthesis of Silica Nanoparticle from Rice Husk Ash for Drug Delivery Application. Comb Chem High Throughput Screening 16:458–462

    Article  CAS  Google Scholar 

  35. Greenhalgh K, Turos E (2009) In vivo studies of polyacrylate nanoparticle emulsions for topical and systemic applications. Nanomed Nanotechnol Biol Med 5:46–54

    Article  CAS  Google Scholar 

  36. Turos E, Shim J-Y, Wang Y, Greenhalgh Y, Kumar GS, Reddy K, Dickey S, Lim DV (2007) Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorg Med Chem Lett 17:53–56

    Article  CAS  Google Scholar 

  37. Hofmann-Amtenbrink M, Grainger DW, Hofmann H (2015) Nanoparticles in medicine: current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomed Nanotechnol Biol Med 11:1689–1694

    Google Scholar 

  38. Huh AJ, Kwon YJ (2011) Nanoantibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145

    Article  CAS  Google Scholar 

  39. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  CAS  Google Scholar 

  40. Zhang Y, Shareena Dasari TP, Deng H, Yu H (2015) Antimicrobial activity of gold nanoparticles and ionic gold. Journal of Environmental Science and Health, Part C 33:286–327

    Article  CAS  Google Scholar 

  41. Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9:129–134

    Article  Google Scholar 

  42. Sarkar S, Jana AD, Samanta SK, Mostafa G (2007) Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron 26:4419–4426

    Article  CAS  Google Scholar 

  43. Cobley CM, Chen J, Cho EC, Wang LV, Xia Y (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40:44–56

    Article  CAS  Google Scholar 

  44. Kalita S, Kandimalla R, Sharma KK, Kataki AC. Deka M, Kotoky J (2016) Amoxicillin functionalized gold nanoparticles reverts MRSA resistance. Mater Sci Eng C 61:720–727

    Google Scholar 

  45. Singh M, Sing S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomater Biostructures 3:115–122

    Google Scholar 

  46. Ahmed V, Kumar M, Kumar J, Manu B, Chauhan NS (2013) Nanogold/Polyaniline/Penicillin G Nanoconjugates: A Novel Nanomedicine. Int J Polym Mater Polym Biomaterials 63:86–91

    Article  CAS  Google Scholar 

  47. Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–354

    Article  Google Scholar 

  48. Cho K-H, Park J-E, Osaka T, Park S-G (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960

    Article  CAS  Google Scholar 

  49. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med 3:168–171

    Article  CAS  Google Scholar 

  50. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochem 42:919–923

    Article  CAS  Google Scholar 

  51. Rafii F, Hehman GL, Shahverdi AR (2005) Factors affecting nitroreductase activity in the biological reduction nitrocompounds. Curr Enz Inhibit 1:223–230

    Article  Google Scholar 

  52. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  53. Hussein-Al-Ali SH, El Zowalaty ME, Hussein MZ, Geilich BM, Webster TJ (2014) Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications. Int J Nanomedicine 9:3801–3814

    Article  CAS  Google Scholar 

  54. Esmaeilpour M, Sardarian A-R, Jarrahpour A, Ebrahimi E, Javidi J (2016) Synthesis and characterization of beta-lactam functionalized superparamagnetic Fe3O4@SiO2 nanoparticles as an approach for improvement of antibacterial activity of beta-lactams. RSC Advances 6:43376–43387

    Article  CAS  Google Scholar 

  55. Farias CBB, Silva AF, Rufino RD, Luna JM, Souza JEG, Sarubbo LA (2014) Synthesis of silver nanoparticles using a biosurfactant produced in low-cost medium as stabilizing agent. Electronic J Biotechnology 17:122–125

    Article  CAS  Google Scholar 

  56. Miller KP, Wang L, Benicewicz BC, Decho AW (2015) Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev 44:7787–7807

    Article  CAS  Google Scholar 

  57. Klitzke S, Metreveli G, Peters A, Schaumann GE, Lang F (2015) The fate of silver nanoparticles in soil solution—sorption of solutes and aggregation. Sci Total Environ 535:54–60

    Article  CAS  Google Scholar 

  58. Du LF, Liu WK (2012) Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agronomy for Sustainable Development 32:309–327

    Article  CAS  Google Scholar 

  59. Rico A, Oliveira R, McDonough S, Matser A, Khatikarn J, Satapornvanit K, Nogueira AJA, Soares AMVM, Domingues I, Van den Brink PJ (2014) Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand. Environ Pollut 191:8–16

    Article  CAS  Google Scholar 

  60. Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–2902

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant UMO-2012/07/B/ST5/01941 from National Science Centre of Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zofia Urbanczyk-Lipkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sowinska, M., Morawiak, M., Urbanczyk-Lipkowska, Z., Solecka, J. (2017). Nanochemistry in Drug Design. In: Banik, B. (eds) Beta-Lactams. Springer, Cham. https://doi.org/10.1007/978-3-319-55621-5_10

Download citation

Publish with us

Policies and ethics