Skip to main content

On the Uniqueness of Invariant Measures for the Stochastic Infinite Darcy–Prandtl Number Model

  • Conference paper
  • First Online:
New Trends and Advanced Methods in Interdisciplinary Mathematical Sciences

Abstract

The infinite Darcy–Prandtl number model is an effective reduced model for describing convection in a fluid-saturated porous medium. It is well known that the deterministic model does not possess a unique invariant measure. In this work, we study the dynamics of the infinite Darcy–Prandtl number model, under an additive stochastic forcing of its low modes. This is the so-called stochastic infinite Darcy–Prandtl number model. We prove that the stochastically forced system, does indeed possess a unique invariant measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the notation in conditions 3 and 4, please refer to Section 2.3 of [10].

References

  1. Adams, R.A.: Sobolev Spaces. Academic, New York (1975)

    MATH  Google Scholar 

  2. Charbeneau, R.J.: Groundwater Hydraulics and Pollutant Transport. Prentice Hall, Upper Saddle River (2000)

    Google Scholar 

  3. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. London Mathematical Society Lecture Note Series, vol. 229. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  4. Doering, C., Constantin, P.: Heat transfer in convective turbulence. Nonlinearity 9, 1049–1060 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Doering, C., Constantin, P.: Bounds for heat transport in a porous layer. J. Fluid Mech. 376, 263–296 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier-Stokes Equations and Turbulence. Encyclopedia of Mathematics and Its Applications, vol. 83. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  7. Horton, C.W., Rogers, F.T.: Convection currents in a porous medium. J. Appl. Phys. 16, 367–370 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lapwood, E.R.: Convection of a fluid in a porous medium. Math. Proc. Camb. Philos. Soc. 44, 508–521 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lewis, M.A.: Water in Earth Science Mapping for Planning, Development and Conservation. McCall, J., Marker, B. (eds.). Graham and Trotman, London (1989)

    Google Scholar 

  10. Liu, D., Weinan, E.: Gibbsian dynamics and invariant measures for stochastic PDE. J. Stat. Phys. 108, 1125–1156 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ly, H.V., Titi, E.S.: Global Gevrey regularity for the Benard convection in a porous medium with zero Darcy–Prandtl number. J. Nonlinear Sci. 9, 333–362 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mattingly, J.: The stochastically forced Navier-Stokes equations: energy estimates and phase space contractions. Ph.d thesis, Princeton University (1998)

    Google Scholar 

  13. Mattingly, J., Weinan, E., Sinai, Y.: Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equations. Commun. Math. Phys. 224, 83–106 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nield, D., Bejan, A.: Convection in Porous Media. 2nd edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  15. Parshad, R.D.: Asymptotic behaviour of convection in porous media. PhD Thesis, Florida State University (2009)

    Google Scholar 

  16. Parshad, R.D.: Asymptotic behaviour of the Darcy–Boussinesq system at large Darcy–Prandtl number. Discrete Contin. Dyn. Syst A. Special issue 18. 26(4), 1441–1469 ( 2010)

    Google Scholar 

  17. Saad, M.: Ensembles inertiels pour un modele de convection naturelle dissipatif, en milieu poreux. C.R. Acad. Sci Paris Serie I 316, 1277–1280 (1993)

    Google Scholar 

  18. Saling, J.: Radioactive Waste Management. Taylor and Francis, New York (2001)

    Google Scholar 

  19. Speight, J.: Enhanced Oil Recovery Handbook. Gulf Publishing Company, Houston (2009)

    Google Scholar 

  20. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Applied Mathematical Sciences, vol. 68. Springer, New York (1997)

    Google Scholar 

  21. Vafai, K.: Handbook of Porous Media. Marcel Dekker, New York (2000)

    MATH  Google Scholar 

  22. Wang, X.: Infinite Prandtl number limit of Rayleigh-Benard convection. Commun. Pure Appl. Math. 57, 1265–1282 (2004)

    Article  MATH  Google Scholar 

  23. Wang, X.: Asymptotic behavior of global attractors to the Boussinesq system for Rayleigh-Benard convection at large Prandtl number. Commun. Pure Appl. Math. 60, 1293–1318 (2007)

    Article  MATH  Google Scholar 

  24. Wang, X.: Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete Contin. Dyn. Syst. A 23, 521–540 (2009) [special issue dedicated to Prof. Li Ta-Tsien]

    Google Scholar 

  25. Wang, X.: Lecture notes on elementary statistical theories with applications to fluid systems. 2007 Shanghai Mathematics Summer School in Fudan University. To be published by Higher Education Press, Beijing (2009)

    Google Scholar 

  26. Wu, M., Lee, J.: Ergodicity for the dissipative Boussinesq equations with random forcing. J. Stat. Phys. 117, 929–957 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Young, L.S.: What are SRB measures and which dynamical systems have them? J. Stat. Phys. 108, 733–754 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to sincerely acknowledge the suggestions and guidance provided by his PhD advisor Dr. Xiaoming Wang. These greatly helped in completing the current work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana D. Parshad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Parshad, R.D., Ewald, B. (2017). On the Uniqueness of Invariant Measures for the Stochastic Infinite Darcy–Prandtl Number Model. In: Toni, B. (eds) New Trends and Advanced Methods in Interdisciplinary Mathematical Sciences. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-319-55612-3_9

Download citation

Publish with us

Policies and ethics