Skip to main content

Image Segmentation with the Aid of the p-Adic Metrics

  • Conference paper
  • First Online:
New Trends and Advanced Methods in Interdisciplinary Mathematical Sciences

Abstract

We present the results of numerical simulation for image segmentation based on the chain distance clustering algorithm. The key issue is the use of the p-adic metric, where p > 1 is a prime number, at the scale of levels of brightness (pixel wise). In previous studies the p-adic metric was used mainly in combination with spectral methods. In this paper this metric is explored directly, without preparatory transformations of images. The main distinguishing feature of the p-adic metric is that it reflects the hierarchic structure of information presented in an image. Different classes of images match with in general different prime p (although the choice p = 2 works on average). Therefore the presented image segmentation procedure has to be combined with a kind of learning to select the prime p corresponding to the class of images under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is the nearest neighbor chain algorithm, that, with the reciprocal or mutual nearest neighbor; this is the standard efficient implementation for all standard agglomerative hierarchical clustering algorithms.

  2. 2.

    This (thresholding chains or relation representations, from, e.g., single link clustering, or the minimal spanning tree) has been used for image segmentation in some previous work. A review that includes some of this work is available, e.g., in [28].

  3. 3.

    We noted that future work would consider other color encoding beyond RGB (YUV, etc.); also dynamic range, here 256, to be extended.

  4. 4.

    However, the following comment can be useful to clarify the situation with computational speed up. Clustering that uses a p-adic distance can be considered by analogy with (1) creating a hierarchical clustering, and then (2) cutting the hierarchy to produce a partition. This analogy is more the case if the hierarchy is a contiguity-constrained one. The computational requirements that are referred to quite negatively as regards this work may not be all that bad, especially if one makes comparison relative to straightforward, Euclidean distance or related, segmentation. A further comparison in future work is likely to be beneficial too: the use of wavelet transforms—hierarchical and hence ideally represented p-adically for image and signal segmentation.

References

  1. Ilea, D.E., Whelan, P.F.: Image segmentation based on the integration of colour–texture descriptors—a review. Pattern Recogn. 44(N10–11), 2479–2501 (2011)

    Article  MATH  Google Scholar 

  2. Hill, J., Corona, E., Ao, J., Mitra, S., Nutter, B.: Information theoretic clustering for medical image segmentation. In: Advanced Computational Approaches to Biomedical Engineering, pp. 47–70. Springer, Berlin-Heidelberg (2014)

    Chapter  Google Scholar 

  3. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  4. Vieux, R., Benois-Pineau, J., Domenger, J.-P., Braquelair, A.: Segmentation-based multi-class semantic object detection. Multimedia Tools and Applications, pp. 1–22. Springer Verlag (2011)

    Google Scholar 

  5. Rossi, E., Benini, S., Leonardi, R., Mansencal, B., Benois-Pineau, J., Clustering of scene repeats for essential rushes preview. International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), pp. 234–237, London, United Kingdom (2009)

    Google Scholar 

  6. IEEE Explore Digital Library. http://ieeexplore.ieee.org.

  7. Benois-Pineau, J., Khrennikov, A.Y., Kotovich, N.V.: Segmentation of images in p-adic and Euclidean metrics. Dokl. Math. 64, 450–455 (2001)

    MATH  Google Scholar 

  8. Benois-Pineau, J., Khrennikov, A. (2002). Image segmentation in compressed domain by clustering methods with Euclidean and p-adic metrics. In: Proceedings in Interational Conference in Management of Uncertainty in Knowledge-based Systems (IPMU-2), pp. 969–976, Annecy, France

    Google Scholar 

  9. Khrennikov, A.Y., Kotovich, N.V.: Representation and compression of images with the aid of the m-adic coordinate system. Dokl. Akad. Nauk. 387, 159–163 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Khrennikov, A., Kotovich, N., Borzistaya, E.: Compression of images with the aid of representation by p-adic maps and approximation by Mahler’s polynomials. Dokl. Math. 69(N3), 373–377 (2004)

    MATH  Google Scholar 

  11. Khrennikov, A.Y.: Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models. Kluwer, Dordrecht (1997)

    Book  MATH  Google Scholar 

  12. Albeverio, S., Khrennikov, A.Y., Kloeden, P.: Memory retrieval as a p-adic dynamical system. Biosystems. 49, 105–115 (1997)

    Article  Google Scholar 

  13. Dubischar, D., Gundlach, V.M., Steinkamp, O., Khrennikov, A.Y.: A p-adic model for the process of thinking disturbed by physiological and information noise. J. Theor. Biol. 197, 451–467 (1999)

    Article  MATH  Google Scholar 

  14. Khrennikov, A.Y.: Toward an adequate mathematical model of mental space: conscious/unconscious dynamics on m-adic trees. Biosystems. 90, 656–675 (2007)

    Article  Google Scholar 

  15. Murtagh, F.: Ultrametric model of mind, I: review. P-adic Numbers Ultrametr. Anal. Appl. 4, 193–206 (2012)

    Article  MathSciNet  Google Scholar 

  16. Murtagh, F.: Ultrametric model of mind, II: application to text content analysis. P-adic Numbers Ultrametr. Anal. Appl. 4, 207–221 (2012)

    Article  MathSciNet  Google Scholar 

  17. Lauro-Grotto, R.: The unconscious as an ultrametric set. Am. Imago. 64, 535–543 (2007)

    Article  Google Scholar 

  18. Khrennikov, A., Kotovich, N.: Towards ultrametric modeling of unconscious creativity. Int. J. Cogn. Inform. Nat. Intell. 8(4), 12 (2014)

    Article  Google Scholar 

  19. Murtagh, F.: On ultrametricity, data coding, and computation. J. Classif. 21, 167–184 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Murtagh, F., Contreras, P.: Fast, linear time, m-adic hierarchical clustering for search and retrieval using the baire metric, with linkages to generalized ultrametrics, hashing, formal concept analysis, and precision of data measurement. P-Adic Numbers Ultrametr. Anal. Appl. 4, 45–56 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Bradley, P.: Degenerating families of dendrograms. J. Classif. 25, 27–42 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bradley, P.: From image processing to topological modelling with p-adic numbers. P-Adic Numbers Ultrametr. Anal. Appl. 2, 293–304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bradley, P.: Mumford dendrograms. Comput. J. 53, 393–404 (2010)

    Article  Google Scholar 

  24. Bradley, P.: Comparing G-maps with other topological data structures. GeoInformatica. 18, 595–620 (2014)

    Article  Google Scholar 

  25. Benois-Pineau, J., Khrennikov, A.: Significance delta reasoning with p-adic neural networks: application to shot change detection in video. Comput. J. 53, 417–431 (2010)

    Article  Google Scholar 

  26. Kaufman, L., Rousseeuw, P.J.: Finding groups in data: an introduction to cluster analysis, 1st edn. John Wiley, New York (1990)

    Book  MATH  Google Scholar 

  27. Hastie, T., Tibshirani, R., Friedman, J.: Hierarchical clustering. The elements of statistical learning, 2nd edn, pp. 520–528. Springer, New York (2009)

    Book  MATH  Google Scholar 

  28. Murtagh, F.: Algorithms for contiguity-constrained clustering. Comput. J. 28, 82–88 (1985)

    Article  Google Scholar 

  29. Khrennikov, A., Kozyrev, S.V., Oleschko, K., Jaramillo, A.G., de Jesus Correa Lopez, M.: Application of p-adic analysis to time series. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 16, 1350030 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Khrennikov, A., Oleschko, K., de Jesús Correa Lopez, M.: Modeling fluid’s dynamics with master equations in ultrametric spaces representing the treelike structure of capillary networks. Entropy. 18(7), 249 (2016)

    Article  MathSciNet  Google Scholar 

  31. Khrennikov, A., Oleschko, K., de Jesús Correa Lopez, M.: Application of p-adic wavelets to model reaction-diffusion dynamics in random porous media. J. Fourier Anal. Appl. 22, 809–822 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Khrennikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Khrennikov, A., Kotovich, N. (2017). Image Segmentation with the Aid of the p-Adic Metrics. In: Toni, B. (eds) New Trends and Advanced Methods in Interdisciplinary Mathematical Sciences. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-319-55612-3_6

Download citation

Publish with us

Policies and ethics