Skip to main content

Global Stabilization of Nonlinear Systems via Novel Second Order Sliding Mode Control with an Application to a Novel Highly Chaotic System

  • Chapter
  • First Online:
Applications of Sliding Mode Control in Science and Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 709))

  • 1481 Accesses

Abstract

Sliding mode control is an important method used to solve various problems in control systems engineering. In robust control systems, the sliding mode control is often adopted due to its inherent advantages of easy realization, fast response and good transient performance as well as insensitivity to parameter uncertainties and disturbance. In this work, we derive a novel second order sliding mode control method for the global stabilization of any nonlinear system. The global stabilization result is derived using novel second order sliding mode control method and established using Lyapunov stability theory. Chaos in nonlinear dynamics occurs widely in physics, chemistry, biology, ecology, secure communications, cryptosystems and many scientific branches. Synchronization of chaotic systems is an important research problem in chaos theory. As an application of the general result, the problem of global chaos control of a novel highly chaotic system is studied and a new sliding mode controller is derived. The Lyapunov exponents of the novel chaotic system are obtained as \(L_1 = 12.8393\), \(L_2 = 0\) and \(L_3 = -33.1207\). The large value of the maximal Lyapunov exponent (MLE) shows that the novel chaotic system is highly chaotic. The Kaplan-Yorke dimension of the novel chaotic system is obtained as \(D_{KY} = 2.3877\). We show that the novel highly chaotic system has three unstable equilibrium points. Numerical simulations using MATLAB have been shown to depict the phase portraits of the novel highly chaotic system and the global chaos control of the state trajectories of the novel highly chaotic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akgul A, Hussain S, Pehlivan I (2016) A new three-dimensional chaotic system, its dynamical analysis and electronic circuit applications. Optik 127(18):7062–7071

    Google Scholar 

  2. Akgul A, Moroz I, Pehlivan I, Vaidyanathan S (2016) A new four-scroll chaotic attractor and its engineering applications. Optik 127(13):5491–5499

    Google Scholar 

  3. Arneodo A, Coullet P, Tresser C (1981) Possible new strange attractors with spiral structure. Commun Math Phys 79(4):573–576

    Article  MathSciNet  MATH  Google Scholar 

  4. Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design. Springer, Berlin, Germany

    Book  MATH  Google Scholar 

  5. Azar AT, Vaidyanathan S (2016) Advances in chaos theory and intelligent control. Springer, Berlin, Germany

    Book  MATH  Google Scholar 

  6. Azar AT, Vaidyanathan S (2017) Fractional order control and synchronization of chaotic systems. Springer, Berlin, Germany

    Book  Google Scholar 

  7. Boulkroune A, Bouzeriba A, Bouden T (2016) Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems. Neurocomputing 173:606–614

    Article  MATH  Google Scholar 

  8. Burov DA, Evstigneev NM, Magnitskii NA (2017) On the chaotic dynamics in two coupled partial differential equations for evolution of surface plasmon polaritons. Commun Nonlinear Sci Numer Simul 46:26–36

    Article  MathSciNet  Google Scholar 

  9. Cai G, Tan Z (2007) Chaos synchronization of a new chaotic system via nonlinear control. J Uncertain Syst 1(3):235–240

    Google Scholar 

  10. Chai X, Chen Y, Broyde L (2017) A novel chaos-based image encryption algorithm using DNA sequence operations. Opt Lasers Eng 88:197–213

    Article  Google Scholar 

  11. Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurcat Chaos 9(7):1465–1466

    Article  MathSciNet  MATH  Google Scholar 

  12. Chenaghlu MA, Jamali S, Khasmakhi NN (2016) A novel keyed parallel hashing scheme based on a new chaotic system. Chaos Solitons Fractals 87:216–225

    Article  MATH  Google Scholar 

  13. Fallahi K, Leung H (2010) A chaos secure communication scheme based on multiplication modulation. Commun Nonlinear Sci Numer Simul 15(2):368–383

    Article  MATH  Google Scholar 

  14. Fontes RT, Eisencraft M (2016) A digital bandlimited chaos-based communication system. Commun Nonlinear Sci Numer Simul 37:374–385

    Article  MathSciNet  Google Scholar 

  15. Fotsa RT, Woafo P (2016) Chaos in a new bistable rotating electromechanical system. Chaos Solitons Fractals 93:48–57

    Article  MathSciNet  Google Scholar 

  16. Kacar S (2016) Analog circuit and microcontroller based RNG application of a new easy realizable 4D chaotic system. Optik 127(20):9551–9561

    Article  Google Scholar 

  17. Karthikeyan R, Sundarapandian V (2014) Hybrid chaos synchronization of four-scroll systems via active control. J Electr Eng 65(2):97–103

    Google Scholar 

  18. Khalil HK (2002) Nonlinear Syst. Prentice Hall, New York, USA

    Google Scholar 

  19. Lakhekar GV, Waghmare LM, Vaidyanathan S (2016) Diving autopilot design for underwater vehicles using an adaptive neuro-fuzzy sliding mode controller. In: Vaidyanathan S, Volos C (eds) Advances and applications in nonlinear control systems. Springer, Berlin, Germany, pp 477–503

    Chapter  Google Scholar 

  20. Li D (2008) A three-scroll chaotic attractor. Phys Lett A 372(4):387–393

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu H, Ren B, Zhao Q, Li N (2016) Characterizing the optical chaos in a special type of small networks of semiconductor lasers using permutation entropy. Opt Commun 359:79–84

    Google Scholar 

  22. Liu W, Sun K, Zhu C (2016) A fast image encryption algorithm based on chaotic map. Opt Lasers Eng 84:26–36

    Google Scholar 

  23. Liu X, Mei W, Du H (2016) Simultaneous image compression, fusion and encryption algorithm based on compressive sensing and chaos. Opt Commun 366:22–32

    Google Scholar 

  24. Lorenz EN (1963) Deterministic periodic flow. J Atmos Sci 20(2):130–141

    Article  Google Scholar 

  25. Lü J, Chen G (2002) A new chaotic attractor coined. Int J Bifurcat Chaos 12(3):659–661

    Article  MathSciNet  MATH  Google Scholar 

  26. Moussaoui S, Boulkroune A, Vaidyanathan S (2016) Fuzzy adaptive sliding-mode control scheme for uncertain underactuated systems. In: Vaidyanathan S, Volos C (eds) Advances and applications in nonlinear control systems. Springer, Berlin, Germany, pp 351–367

    Chapter  Google Scholar 

  27. Pehlivan I, Moroz IM, Vaidyanathan S (2014) Analysis, synchronization and circuit design of a novel butterfly attractor. J Sound Vib 333(20):5077–5096

    Article  Google Scholar 

  28. Pham VT, Volos C, Jafari S, Wang X, Vaidyanathan S (2014) Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectron Adv Mater Rapid Commun 8(11–12):1157–1163

    Google Scholar 

  29. Pham VT, Volos CK, Vaidyanathan S (2015) Multi-scroll chaotic oscillator based on a first-order delay differential equation. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design. Studies in computational intelligence, vol 581. Springer, Germany, pp 59–72

    Google Scholar 

  30. Pham VT, Volos CK, Vaidyanathan S, Le TP, Vu VY (2015) A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating. J Eng Sci Technol Rev 8(2):205–214

    Google Scholar 

  31. Pham VT, Jafari S, Vaidyanathan S, Volos C, Wang X (2016) A novel memristive neural network with hidden attractors and its circuitry implementation. Sci China Technol Sci 59(3):358–363

    Google Scholar 

  32. Pham VT, Jafari S, Volos C, Giakoumis A, Vaidyanathan S, Kapitaniak T (2016) A chaotic system with equilibria located on the rounded square loop and its circuit implementation. IEEE Trans Circuits Syst II: Express Briefs 63(9):878–882

    Google Scholar 

  33. Pham VT, Jafari S, Volos C, Vaidyanathan S, Kapitaniak T (2016) A chaotic system with infinite equilibria located on a piecewise linear curve. Optik 127(20):9111–9117

    Google Scholar 

  34. Pham VT, Vaidyanathan S, Volos CK, Hoang TM, Yem VV (2016) Dynamics, synchronization and SPICE implementation of a memristive system with hidden hyperchaotic attractor. In: Azar AT, Vaidyanathan S (eds) Advances in chaos theory and intelligent control. Springer, Berlin, Germany, pp 35–52

    Google Scholar 

  35. Pham VT, Vaidyanathan S, Volos CK, Jafari S, Kuznetsov NV, Hoang TM (2016) A novel memristive time-delay chaotic system without equilibrium points. Eur Phys J: Spec Top 225(1):127–136

    Google Scholar 

  36. Pham VT, Vaidyanathan S, Volos CK, Jafari S, Wang X (2016) A chaotic hyperjerk system based on memristive device. In: Vaidyanathan S, Volos C (eds) Advances and applications in chaotic systems. Springer, Berlin, Germany, pp 39–58

    Google Scholar 

  37. Rasappan S, Vaidyanathan S (2012) Global chaos synchronization of WINDMI and Coullet chaotic systems by backstepping control. Far East J Math Sci 67(2):265–287

    Google Scholar 

  38. Rasappan S, Vaidyanathan S (2012) Hybrid synchronization of \(n\)-scroll Chua and Lur’e chaotic systems via backstepping control with novel feedback. Arch Control Sci 22(3):343–365

    Google Scholar 

  39. Rasappan S, Vaidyanathan S (2012) Synchronization of hyperchaotic Liu system via backstepping control with recursive feedback. Commun Comput Inf Sci 305:212–221

    Google Scholar 

  40. Rasappan S, Vaidyanathan S (2013) Hybrid synchronization of \(n\)-scroll chaotic Chua circuits using adaptive backstepping control design with recursive feedback. Malay J Math Sci 7(2):219–246

    MathSciNet  Google Scholar 

  41. Rasappan S, Vaidyanathan S (2014) Global chaos synchronization of WINDMI and Coullet chaotic systems using adaptive backstepping control design. Kyungpook Math J 54(1):293–320

    Article  MathSciNet  MATH  Google Scholar 

  42. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398

    Article  Google Scholar 

  43. Sampath S, Vaidyanathan S, Volos CK, Pham VT (2015) An eight-term novel four-scroll chaotic system with cubic nonlinearity and its circuit simulation. J Eng Sci Technol Rev 8(2):1–6

    Google Scholar 

  44. Sarasu P, Sundarapandian V (2011) Active controller design for generalized projective synchronization of four-scroll chaotic systems. Int J Syst Signal Control Eng Appl 4(2):26–33

    Google Scholar 

  45. Sarasu P, Sundarapandian V (2011) The generalized projective synchronization of hyperchaotic Lorenz and hyperchaotic Qi systems via active control. Int J Soft Comput 6(5):216–223

    Google Scholar 

  46. Sarasu P, Sundarapandian V (2012) Adaptive controller design for the generalized projective synchronization of 4-scroll systems. Int J Syst Signal Control Eng Appl 5(2):21–30

    Google Scholar 

  47. Sarasu P, Sundarapandian V (2012) Generalized projective synchronization of three-scroll chaotic systems via adaptive control. Eur J Sci Res 72(4):504–522

    Google Scholar 

  48. Sarasu P, Sundarapandian V (2012) Generalized projective synchronization of two-scroll systems via adaptive control. Eur J Sci Res 72(4):146–156

    Google Scholar 

  49. Shirkhani N, Khanesar M, Teshnehlab M (2016) Indirect model reference fuzzy control of SISO fractional order nonlinear chaotic systems. Proc Comput Sci 102:309–316

    Article  Google Scholar 

  50. Sprott JC (1994) Some simple chaotic flows. Phys Rev E 50(2):647–650

    Article  MathSciNet  Google Scholar 

  51. Sundarapandian V (2013) Adaptive control and synchronization design for the Lu-Xiao chaotic system. Lect Notes Electr Eng 131:319–327

    Google Scholar 

  52. Sundarapandian V (2013) Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. J Eng Sci Technol Rev 6(4):45–52

    Google Scholar 

  53. Sundarapandian V, Karthikeyan R (2011) Anti-synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems by adaptive control. Int J Syst Signal Control Eng Appl 4(2):18–25

    Google Scholar 

  54. Sundarapandian V, Karthikeyan R (2012) Hybrid synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems via active control. Int J Syst Signal Control Eng Appl 7(3):254–264

    Google Scholar 

  55. Sundarapandian V, Pehlivan I (2012) Analysis, control, synchronization, and circuit design of a novel chaotic system. Math Comput Modell 55(7–8):1904–1915

    Article  MathSciNet  MATH  Google Scholar 

  56. Sundarapandian V, Sivaperumal S (2011) Sliding controller design of hybrid synchronization of four-wing Chaotic systems. Int J Soft Comput 6(5):224–231

    Article  Google Scholar 

  57. Suresh R, Sundarapandian V (2013) Global chaos synchronization of a family of n-scroll hyperchaotic Chua circuits using backstepping control with recursive feedback. Far East J Math Sci 73(1):73–95

    MATH  Google Scholar 

  58. Szmit Z, Warminski J (2016) Nonlinear dynamics of electro-mechanical system composed of two pendulums and rotating hub. Proc Eng 144:953–958

    Article  Google Scholar 

  59. Tacha OI, Volos CK, Kyprianidis IM, Stouboulos IN, Vaidyanathan S, Pham VT (2016) Analysis, adaptive control and circuit simulation of a novel nonlinear finance system. Appl Math Comput 276:200–217

    MathSciNet  MATH  Google Scholar 

  60. Tigan G, Opris D (2008) Analysis of a 3D chaotic system. Chaos Solitons Fractals 36:1315–1319

    Article  MathSciNet  MATH  Google Scholar 

  61. Utkin VI (1977) Variable structure systems with sliding modes. IEEE Trans Autom Control 22(2):212–222

    Article  MathSciNet  MATH  Google Scholar 

  62. Utkin VI (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans Ind Electron 40(1):23–36

    Article  Google Scholar 

  63. Vaidyanathan S (2011) Analysis and synchronization of the hyperchaotic Yujun systems via sliding mode control. Adv Intell Syst Comput 176:329–337

    Article  Google Scholar 

  64. Vaidyanathan S (2012) Anti-synchronization of Sprott-L and Sprott-M chaotic systems via adaptive control. Int J Control Theory Appl 5(1):41–59

    Google Scholar 

  65. Vaidyanathan S (2012) Global chaos control of hyperchaotic Liu system via sliding control method. Int J Control Theory Appl 5(2):117–123

    Google Scholar 

  66. Vaidyanathan S (2012) Sliding mode control based global chaos control of Liu-Liu-Liu-Su chaotic system. Int J Control Theory Appl 5(1):15–20

    Google Scholar 

  67. Vaidyanathan S (2013) A new six-term 3-D chaotic system with an exponential nonlinearity. Far East J Math Sci 79(1):135–143

    Google Scholar 

  68. Vaidyanathan S (2013) Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. J Eng Sci Technol Rev 6(4):53–65

    Google Scholar 

  69. Vaidyanathan S (2014) A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East J Math Sci 84(2):219–226

    Google Scholar 

  70. Vaidyanathan S (2014) Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. Eur Phys J: Spec Top 223(8):1519–1529

    Google Scholar 

  71. Vaidyanathan S (2014) Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. Int J Modell Ident Control 22(1):41–53

    Google Scholar 

  72. Vaidyanathan S (2014) Generalised projective synchronisation of novel 3-D chaotic systems with an exponential non-linearity via active and adaptive control. Int J Modell Ident Control 22(3):207–217

    Google Scholar 

  73. Vaidyanathan S (2014) Global chaos synchronisation of identical Li-Wu chaotic systems via sliding mode control. Int J Modell Ident Control 22(2):170–177

    Google Scholar 

  74. Vaidyanathan S (2015) A 3-D novel highly chaotic system with four quadratic nonlinearities, its adaptive control and anti-synchronization with unknown parameters. J Eng Sci Technol Rev 8(2):106–115

    Google Scholar 

  75. Vaidyanathan S (2015) A novel chemical chaotic reactor system and its adaptive control. Int J ChemTech Res 8(7):146–158

    Google Scholar 

  76. Vaidyanathan S (2015) A novel chemical chaotic reactor system and its output regulation via integral sliding mode control. Int J ChemTech Res 8(11):669–683

    Google Scholar 

  77. Vaidyanathan S (2015) Active control design for the anti-synchronization of Lotka-Volterra biological systems with four competitive species. Int J PharmTech Res 8(7):58–70

    Google Scholar 

  78. Vaidyanathan S (2015) Adaptive control design for the anti-synchronization of novel 3-D chemical chaotic reactor systems. Int J ChemTech Res 8(11):654–668

    Google Scholar 

  79. Vaidyanathan S (2015) Adaptive control of a chemical chaotic reactor. Int J PharmTech Res 8(3):377–382

    Google Scholar 

  80. Vaidyanathan S (2015) Adaptive control of the FitzHugh-Nagumo chaotic neuron model. Int J PharmTech Res 8(6):117–127

    Google Scholar 

  81. Vaidyanathan S (2015) Adaptive synchronization of chemical chaotic reactors. Int J ChemTech Res 8(2):612–621

    Google Scholar 

  82. Vaidyanathan S (2015) Adaptive synchronization of generalized Lotka-Volterra three-species biological systems. Int J PharmTech Res 8(5):928–937

    Google Scholar 

  83. Vaidyanathan S (2015) Adaptive synchronization of novel 3-D chemical chaotic reactor systems. Int J ChemTech Res 8(7):159–171

    Google Scholar 

  84. Vaidyanathan S (2015) Analysis, properties and control of an eight-term 3-D chaotic system with an exponential nonlinearity. Int J Modell Ident Control 23(2):164–172

    Google Scholar 

  85. Vaidyanathan S (2015) Anti-synchronization of brusselator chemical reaction systems via adaptive control. Int J ChemTech Res 8(6):759–768

    Google Scholar 

  86. Vaidyanathan S (2015) Anti-synchronization of brusselator chemical reaction systems via integral sliding mode control. Int J ChemTech Res 8(11):700–713

    Google Scholar 

  87. Vaidyanathan S (2015) Anti-synchronization of chemical chaotic reactors via adaptive control method. Int J ChemTech Res 8(8):73–85

    Google Scholar 

  88. Vaidyanathan S (2015) Anti-synchronization of the FitzHugh-Nagumo chaotic neuron models via adaptive control method. Int J PharmTech Res 8(7):71–83

    Google Scholar 

  89. Vaidyanathan S (2015) Chaos in neurons and synchronization of Birkhoff-Shaw strange chaotic attractors via adaptive control. Int J PharmTech Res 8(6):1–11

    Google Scholar 

  90. Vaidyanathan S (2015) Dynamics and control of brusselator chemical reaction. Int J ChemTech Res 8(6):740–749

    Google Scholar 

  91. Vaidyanathan S (2015) Dynamics and control of Tokamak system with symmetric and magnetically confined plasma. Int J ChemTech Res 8(6):795–802

    Google Scholar 

  92. Vaidyanathan S (2015) Global chaos synchronization of chemical chaotic reactors via novel sliding mode control method. Int J ChemTech Res 8(7):209–221

    Google Scholar 

  93. Vaidyanathan S (2015) Global chaos synchronization of Duffing double-well chaotic oscillators via integral sliding mode control. Int J ChemTech Res 8(11):141–151

    Google Scholar 

  94. Vaidyanathan S (2015) Global chaos synchronization of the forced Van der Pol chaotic oscillators via adaptive control method. Int J PharmTech Res 8(6):156–166

    Google Scholar 

  95. Vaidyanathan S (2015) Hybrid chaos synchronization of the FitzHugh-Nagumo chaotic neuron models via adaptive control method. Int J PharmTech Res 8(8):48–60

    Google Scholar 

  96. Vaidyanathan S (2015) Integral sliding mode control design for the global chaos synchronization of identical novel chemical chaotic reactor systems. Int J ChemTech Res 8(11):684–699

    Google Scholar 

  97. Vaidyanathan S (2015) Output regulation of the forced Van der Pol chaotic oscillator via adaptive control method. Int J PharmTech Res 8(6):106–116

    Google Scholar 

  98. Vaidyanathan S (2015) Sliding controller design for the global chaos synchronization of forced Van der Pol chaotic oscillators. Int J PharmTech Res 8(7):100–111

    Google Scholar 

  99. Vaidyanathan S (2015) Synchronization of Tokamak systems with symmetric and magnetically confined plasma via adaptive control. Int J ChemTech Res 8(6):818–827

    Google Scholar 

  100. Vaidyanathan S (2016) A novel 3-D conservative chaotic system with a sinusoidal nonlinearity and its adaptive control. Int J Control Theory Appl 9(1):115–132

    Google Scholar 

  101. Vaidyanathan S (2016) A novel 3-D jerk chaotic system with three quadratic nonlinearities and its adaptive control. Arch Control Sci 26(1):19–47

    Google Scholar 

  102. Vaidyanathan S (2016) A novel 3-D jerk chaotic system with two quadratic nonlinearities and its adaptive backstepping control. Int J Control Theory Appl 9(1):199–219

    Google Scholar 

  103. Vaidyanathan S (2016) Anti-synchronization of 3-cells cellular neural network attractors via integral sliding mode control. Int J PharmTech Res 9(1):193–205

    Google Scholar 

  104. Vaidyanathan S (2016) Generalized projective synchronization of Vaidyanathan Chaotic system via active and adaptive control. In: Vaidyanathan S, Volos C (eds) Advances and applications in nonlinear control systems. Springer, Berlin, Germany, pp 97–116

    Google Scholar 

  105. Vaidyanathan S (2016) Global chaos control of the FitzHugh-Nagumo chaotic neuron model via integral sliding mode control. Int J PharmTech Res 9(4):413–425

    Google Scholar 

  106. Vaidyanathan S (2016) Global chaos control of the generalized Lotka-Volterra three-species system via integral sliding mode control. Int J PharmTech Res 9(4):399–412

    Google Scholar 

  107. Vaidyanathan S (2016) Global chaos regulation of a symmetric nonlinear gyro system via integral sliding mode control. Int J ChemTech Res 9(5):462–469

    Google Scholar 

  108. Vaidyanathan S (2016) Hybrid synchronization of the generalized Lotka-Volterra three-species biological systems via adaptive control. Int J PharmTech Res 9(1):179–192

    Google Scholar 

  109. Vaidyanathan S (2016) Mathematical analysis, adaptive control and synchronization of a ten-term novel three-scroll chaotic system with four quadratic nonlinearities. Int J Control Theory Appl 9(1):1–20

    Google Scholar 

  110. Vaidyanathan S, Azar AT (2015) Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modelling and control systems design. Studies in computational intelligence, vol 581. Springer, Germany, pp 19–38

    Google Scholar 

  111. Vaidyanathan S, Azar AT (2016) Takagi-Sugeno fuzzy logic controller for Liu-Chen four-scroll chaotic system. Int J Intell Eng Inform 4(2):135–150

    Google Scholar 

  112. Vaidyanathan S, Boulkroune A (2016) A novel 4-D hyperchaotic chemical reactor system and its adaptive control. In: Vaidyanathan S, Volos C (eds) Advances and applications in chaotic systems. Springer, Berlin, Germany, pp 447–469

    Chapter  Google Scholar 

  113. Vaidyanathan S, Madhavan K (2013) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. Int J Control Theory Appl 6(2):121–137

    Google Scholar 

  114. Vaidyanathan S, Pakiriswamy S (2016) A five-term 3-D novel conservative chaotic system and its generalized projective synchronization via adaptive control method. Int J Control Theory Appl 9(1):61–78

    Google Scholar 

  115. Vaidyanathan S, Pakiriswamy S (2013) Generalized projective synchronization of six-term Sundarapandian chaotic systems by adaptive control. Int J Control Theory Appl 6(2):153–163

    Google Scholar 

  116. Vaidyanathan S, Pakiriswamy S (2015) A 3-D novel conservative chaotic system and its generalized projective synchronization via adaptive control. J Eng Sci Technol Rev 8(2):52–60

    Google Scholar 

  117. Vaidyanathan S, Pakiriswamy S (2016) Adaptive control and synchronization design of a seven-term novel chaotic system with a quartic nonlinearity. Int J Control Theory Appl 9(1):237–256

    Google Scholar 

  118. Vaidyanathan S, Rajagopal K (2011) Hybrid synchronization of hyperchaotic Wang-Chen and hyperchaotic Lorenz systems by active non-linear control. Int J Syst Signal Control Eng Appl 4(3):55–61

    Google Scholar 

  119. Vaidyanathan S, Rajagopal K (2012) Global chaos synchronization of hyperchaotic Pang and hyperchaotic Wang systems via adaptive control. Eur J Sci Res 7(1):28–37

    MATH  Google Scholar 

  120. Vaidyanathan S, Rajagopal K (2016) Adaptive control, synchronization and LabVIEW implementation of Rucklidge chaotic system for nonlinear double convection. Int J Control Theory Appl 9(1):175–197

    Google Scholar 

  121. Vaidyanathan S, Rajagopal K (2016) Analysis, control, synchronization and LabVIEW implementation of a seven-term novel chaotic system. Int J Control Theory Appl 9(1):151–174

    Google Scholar 

  122. Vaidyanathan S, Rasappan S (2014) Global chaos synchronization of \(n\)-scroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arab J Sci Eng 39(4):3351–3364

    Article  Google Scholar 

  123. Vaidyanathan S, Sampath S (2011) Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. Commun Comput Inf Sci 205:156–164

    Google Scholar 

  124. Vaidyanathan S, Volos C (2015) Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Arch Control Sci 25(3):333–353

    MathSciNet  Google Scholar 

  125. Vaidyanathan S, Volos C (2016) Advances and applications in chaotic systems. Springer, Berlin, Germany

    Google Scholar 

  126. Vaidyanathan S, Volos C (2016) Advances and applications in nonlinear control systems. Springer, Berlin, Germany

    Google Scholar 

  127. Vaidyanathan S, Volos C (2017) Advances in memristors, memristive devices and systems. Springer, Berlin, Germany

    Book  Google Scholar 

  128. Vaidyanathan S, Volos C, Pham VT, Madhavan K, Idowu BA (2014) Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Arch Control Sci 24(3):375–403

    MathSciNet  MATH  Google Scholar 

  129. Vaidyanathan S, Azar AT, Rajagopal K, Alexander P (2015) Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronisation via active control. Int J Modell Ident Control 23(3):267–277

    Google Scholar 

  130. Vaidyanathan S, Idowu BA, Azar AT (2015) Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design. Springer, Berlin, Germany, pp 39–58

    Google Scholar 

  131. Vaidyanathan S, Rajagopal K, Volos CK, Kyprianidis IM, Stouboulos IN (2015) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system with three quadratic nonlinearities and its digital implementation in LabVIEW. J Eng Sci Technol Rev 8(2):130–141

    Google Scholar 

  132. Vaidyanathan S, Volos CK, Kyprianidis IM, Stouboulos IN, Pham VT (2015) Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):24–36

    Google Scholar 

  133. Vaidyanathan S, Volos CK, Pham VT (2015) Analysis, adaptive control and adaptive synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):181–191

    Google Scholar 

  134. Vaidyanathan S, Volos CK, Pham VT (2015) Global chaos control of a novel nine-term chaotic system via sliding mode control. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems. Studies in computational intelligence, vol 576. Springer, Germany, pp 571–590

    Google Scholar 

  135. Vaidyanathan S, Volos CK, Rajagopal K, Kyprianidis IM, Stouboulos IN (2015) Adaptive backstepping controller design for the anti-synchronization of identical WINDMI chaotic systems with unknown parameters and its SPICE implementation. J Eng Sci Technol Rev 8(2):74–82

    Google Scholar 

  136. Vaidyanathan S, Madhavan K, Idowu BA (2016) Backstepping control design for the adaptive stabilization and synchronization of the Pandey jerk chaotic system with unknown parameters. Int J Control Theory Appl 9(1):299–319

    Google Scholar 

  137. Volos CK, Kyprianidis IM, Stouboulos IN, Tlelo-Cuautle E, Vaidyanathan S (2015) Memristor: a new concept in synchronization of coupled neuromorphic circuits. J Eng Sci Technol Rev 8(2):157–173

    Google Scholar 

  138. Volos CK, Pham VT, Vaidyanathan S, Kyprianidis IM, Stouboulos IN (2015) Synchronization phenomena in coupled Colpitts circuits. J Eng Sci Technol Rev 8(2):142–151

    Google Scholar 

  139. Volos CK, Pham VT, Vaidyanathan S, Kyprianidis IM, Stouboulos IN (2016) Synchronization phenomena in coupled hyperchaotic oscillators with hidden attractors using a nonlinear open loop controller. In: Vaidyanathan S, Volos C (eds) Advances and applications in chaotic systems. Springer, Berlin, Germany, pp 1–38

    Google Scholar 

  140. Volos CK, Pham VT, Vaidyanathan S, Kyprianidis IM, Stouboulos IN (2016) The case of bidirectionally coupled nonlinear circuits via a memristor. In: Vaidyanathan S, Volos C (eds) Advances and applications in nonlinear control systems. Springer, Berlin, Germany, pp 317–350

    Google Scholar 

  141. Volos CK, Prousalis D, Kyprianidis IM, Stouboulos I, Vaidyanathan S, Pham VT (2016) Synchronization and anti-synchronization of coupled Hindmarsh-Rose neuron models. Int J Control Theory Appl 9(1):101–114

    Google Scholar 

  142. Volos CK, Vaidyanathan S, Pham VT, Maaita JO, Giakoumis A, Kyprianidis IM, Stouboulos IN (2016) A novel design approach of a nonlinear resistor based on a memristor emulator. In: Azar AT, Vaidyanathan S (eds) Advances in chaos theory and intelligent control. Springer, Berlin, Germany, pp 3–34

    Google Scholar 

  143. Wang B, Zhong SM, Dong XC (2016) On the novel chaotic secure communication scheme design. Commun Nonlinear Sci Numer Simul 39:108–117

    Article  MathSciNet  Google Scholar 

  144. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Physica D 16:285–317

    Article  MathSciNet  MATH  Google Scholar 

  145. Wu T, Sun W, Zhang X, Zhang S (2016) Concealment of time delay signature of chaotic output in a slave semiconductor laser with chaos laser injection. Opt Commun 381:174–179

    Article  Google Scholar 

  146. Xu G, Liu F, Xiu C, Sun L, Liu C (2016) Optimization of hysteretic chaotic neural network based on fuzzy sliding mode control. Neurocomputing 189:72–79

    Google Scholar 

  147. Xu H, Tong X, Meng X (2016) An efficient chaos pseudo-random number generator applied to video encryption. Optik 127(20):9305–9319

    Google Scholar 

  148. Zhou W, Xu Y, Lu H, Pan L (2008) On dynamics analysis of a new chaotic attractor. Phys Lett A 372(36):5773–5777

    Article  MathSciNet  MATH  Google Scholar 

  149. Zhu C, Liu Y, Guo Y (2010) Theoretic and numerical study of a new chaotic system. Intell Inf Manage 2:104–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundarapandian Vaidyanathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vaidyanathan, S. (2017). Global Stabilization of Nonlinear Systems via Novel Second Order Sliding Mode Control with an Application to a Novel Highly Chaotic System. In: Vaidyanathan, S., Lien, CH. (eds) Applications of Sliding Mode Control in Science and Engineering. Studies in Computational Intelligence, vol 709. Springer, Cham. https://doi.org/10.1007/978-3-319-55598-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55598-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55597-3

  • Online ISBN: 978-3-319-55598-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics