Skip to main content

Terminal Sliding Mode Controller Design for a Quadrotor Unmanned Aerial Vehicle

  • Chapter
  • First Online:
Applications of Sliding Mode Control in Science and Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 709))

Abstract

This chapter deals with the modeling and the control of a Quadrotor type of Unmanned Aerial Vehicles (UAVs) using a Terminal Sliding Mode Control (TSMC) approach. The objectives of this proposed nonlinear control strategy are the stabilization and path tracking of the altitude and the attitude of such an aircraft. The TSMC structure is designed to overcome several problems occur with the classical SMC one such as the chattering phenomenon. With this TSMC approach, it is guaranteed that the output tracking error converges to zero in a finite time unlike the classical SMC. The main structural difference between all proposed SMC structures, i.e. classical and terminal variants, is defined at the sliding surface form that determines the states dynamics of the controlled Quadrotor by chosen the suitable parameters of this surface. High performances of the proposed TSMC controllers are showed through the tracking of a desired flight path. Demonstrative simulation results are carried out in order to show the effectiveness of the proposed normal SMC and TSMC approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Austin R (2010) Unmanned aircraft systems: UAVs design, development and deployment, 1st edn. Wiley, London

    Book  Google Scholar 

  2. Bandyopadhyay B, Janardhanan S (2006) Discrete-time sliding mode control: a multirate output feedback approach, 1st edn. Springer, Heidelberg

    MATH  Google Scholar 

  3. Bandyopadhyay B, Shyam K (2015) Stabilization and control of fractional order systems: a sliding mode approach, 1st edn. Springer International Publishing, Switzerland. ISBN: 978-3-319-08620-0

    Google Scholar 

  4. Bartoszewicz A (ed) (2011). Sliding mode control. 1st edition, InTech, Rijeka, Croatia. ISBN: 978-953-307-162-6

    Google Scholar 

  5. Ben Ammar N, Bouallègue S, Haggège J (2016) Modeling and sliding mode control of a quadrotor unmanned aerial vehicle. In: Proceedings of the 3th international conference on automation, control engineering and computer science (ACECS 2016), Hammamet, Tunisia, pp 834–840

    Google Scholar 

  6. Bouadi H, Tadjine M (2007) Nonlinear observer design and sliding mode control of four rotors helicopter. I J Mech Aerosp Ind Mechatron Manuf Eng 1(7):329–334

    Google Scholar 

  7. Bouallègue S, Fessi R (2016) Rapid control prototyping and PIL co-simulation of a quadrotor UAV based on NI myRIO-1900 board. I J Adv Comput Sci Appl 7(6):26–35

    Google Scholar 

  8. Cao Q, Li S, Zhao D (2016) Full-order multi-input/multi-output terminal sliding mode control for robotic manipulators. I J Model Ident Control 15(1):17–27

    Article  Google Scholar 

  9. Chen M, Wu QX, Cui RX (2013) Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems. ISA Trans 52(2):198–206

    Article  Google Scholar 

  10. Feng Y, Yu X, Man Z (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica 38:2159–2167

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng Y, Yu X, Han F (2013) On nonsingular terminal sliding mode control of nonlinear systems. Automatica 49:1715–1722

    Article  MathSciNet  Google Scholar 

  12. Feng Y, Han F, Yu X (2014) Chattering free full-order sliding mode control. Automatica 50:1310–1314

    Article  MathSciNet  MATH  Google Scholar 

  13. Fessi R, Bouallègue S (2016) Modeling and optimal LQG controller design for a quadrotor UAV. In: Proceedings of the 3th international conference on automation, control engineering and computer science (ACECS 2016), Hammamet, Tunisia, pp 264–270

    Google Scholar 

  14. Gu YJ, Yin XX, Liu HW, Wei Li W, Lin YG (2015) Fuzzy terminal sliding mode control for extracting maximum marine current energy. Energy 90(1):258–265

    Article  Google Scholar 

  15. Lakhekar GV, Waghmare LM, Vaidyanathan S (2016) Diving autopilot design for underwater vehicles using an adaptive neuro-fuzzy sliding mode controller. Stud Comput Intell 635:477–503

    Google Scholar 

  16. Liu J, Wang X (2012) Advanced sliding mode control for mechanical systems: design. Springer, Heidelberg, Analysis and MATLAB Simulation

    MATH  Google Scholar 

  17. Lozano R (ed) (2010) Unmanned aerial vehicles: embedded control, 1st edn. Wiley, New York

    Google Scholar 

  18. Nagati A, Saeedi S, Thibault C, Seto M, Li H (2013) Control and navigation framework for quadrotor helicopters. J Intell Rob Syst 70:1–12

    Article  Google Scholar 

  19. Park K-B, Tsuji T (1999) Terminal sliding mode control of second-order nonlinear uncertain systems. Int J Robust Nonlinear Control 9(11):769–780

    Article  MathSciNet  MATH  Google Scholar 

  20. Qian D, Yi J (2015) Hierarchical sliding mode control for underactuated cranes: design. Springer, Heidelberg, Analysis and Simulation

    Google Scholar 

  21. Slotine J-JE, Li W (1991) Applied nonlinear control, 1st edn. Prentice Hall, New Jersey

    MATH  Google Scholar 

  22. Utkin V (1992) Sliding modes in control and optimization, 1st edn. Springer, Heidelberg

    Book  MATH  Google Scholar 

  23. Vaidyanathan S (2015) Sliding mode control of rucklidge chaotic system for nonlinear double convection. Int J ChemTech Res 8(8):25–35

    MathSciNet  Google Scholar 

  24. Vaidyanathan S (2015) Integral sliding mode control design for the global chaos synchronization of identical novel chemical chaotic reactor systems. Int J ChemTech Res 8(11):684–699

    MathSciNet  Google Scholar 

  25. Vaidyanathan S (2015) Sliding controller design for the global chaos synchronization of enzymes-substrates systems. Int J PharmTech Res 8(7):89–99

    MathSciNet  Google Scholar 

  26. Vaidyanathan S (2015) Global chaos synchronization of chemical chaotic reactors via novel sliding mode control method. Int J ChemTech Res 8(7):209–221

    MathSciNet  Google Scholar 

  27. Vaidyanathan S, Sampath S, Azar AT (2015) Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. Int J Model Ident Control 23(1):92–100

    Article  Google Scholar 

  28. Venkataraman ST, Gulati S (1993) Control of nonlinear systems using terminal sliding modes. J Dyn Syst Meas Contr 115(3):554–560

    Article  MATH  Google Scholar 

  29. Wu Y, Yu X, Man Z (1998) terminal sliding mode control design for uncertain dynamic systems. Syst Control Lett 34:281–287

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu R, Özgüner U (2008) Sliding mode control of a class of underactuated systems. Automatica 44(1):233–241

    Article  MathSciNet  MATH  Google Scholar 

  31. Young KD, Özgüner U (eds) (1999) Variable structure systems, sliding mode and nonlinear control, 1st edn. Springer, London

    Google Scholar 

  32. Yu S, Yu X, Man Z (2000) Robust global terminal sliding mode control of SISO nonlinear uncertain systems. In: Proceedings of the 39th IEEE conference on decision and control (CDC 2000), Sydney, pp 2198–2203

    Google Scholar 

  33. Zheng E, Xiong J (2014) Quad-rotor unmanned helicopter control via novel robust terminal sliding mode controller and under-actuated system sliding mode controller. Int J Light Electron Opt 125(12):2817–2825

    Article  Google Scholar 

  34. Zhou W, Zhu P, Wang C (2015) Position and attitude tracking control for a quadrotor UAV based on terminal sliding mode control. In: Proceedings of the 34th Chinese control conference (CCC 2015), Hangzhou, China, pp 3398–3404

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soufiene Bouallègue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fessi, R., Bouallègue, S., Haggège, J., Vaidyanathan, S. (2017). Terminal Sliding Mode Controller Design for a Quadrotor Unmanned Aerial Vehicle. In: Vaidyanathan, S., Lien, CH. (eds) Applications of Sliding Mode Control in Science and Engineering. Studies in Computational Intelligence, vol 709. Springer, Cham. https://doi.org/10.1007/978-3-319-55598-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55598-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55597-3

  • Online ISBN: 978-3-319-55598-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics