Skip to main content

Sliding Mode Control Design for a Sensorless Sun Tracker

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 709))

Abstract

The photovoltaic sun tracker is generally used to increase the electrical energy production. The sun tracker considered in this study has two degrees of freedom (2-DOF) and characterized by the lack of sensors. In this way, the tracker will have as set point the sun position at every second during the day for a specific period of five years. After sunset, the tracker goes back to the initial position automatically, which is sunrise. Sliding mode control is an important method used to solve various problems in control systems engineering. In robust control systems, the sliding mode control is often adopted due to its inherent advantages of easy realization, fast response and good transient performance as well as insensitivity to parameter uncertainties and disturbance. In this work, we apply sliding mode control (SMC) to ensure the tracking mechanism. Also, we design a sliding mode observer to replace the velocity sensor which is affected from a lot of measurement disturbances. The control results are established using Lyapunov stability theory. Numerical simulations are shown to illustrate all the main results derived in this work. Experimental measurements show that this automatic dual-axis sun tracker increases the power production by over 40%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agarwal AK (1992) Two axis tracking system for solar concentrators. Renew Energy 2:181–182

    Article  Google Scholar 

  2. Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design. Springer, Berlin, Germany

    Book  MATH  Google Scholar 

  3. Azar AT, Vaidyanathan S (2016) Advances in Chaos theory and intelligent control. Springer, Berlin, Germany

    Book  MATH  Google Scholar 

  4. Azar AT, Vaidyanathan S (2017) Fractional order control and synchronization of chaotic systems. Springer, Berlin, Germany

    Book  Google Scholar 

  5. Braiek EB, Rotella F (1993) Design of observers for nonlinear time variant systems. In: Proceedings of the IEEE international conference on systems, man and cybernetics. doi:10.1109/ICSMC.1993.390711

  6. Braiek EB, Rotella F (1994) State observer design for analytical non-linear systems. In: Proceedings of the IEEE international conference on systems, man and cybernetics. doi:10.1109/ICSMC.1994.400164

  7. Enslin JHR, Snyman DB (1992) Simplified feed-forward control of the maximum power point in PV installations. In: Proceedings of the international conference on industrial electronics, control, instrumentation, and automation, pp 548–553

    Google Scholar 

  8. Flota M, Alvarez-Salas R, Miranda H, Cabal-Yepez E, Romero-Troncoso RJ (2011) Nonlinear observer-based control for an active rectifier. J Sci Ind Res 70(12):1017–1025

    Google Scholar 

  9. Hua C, Shen C (1997) Control of DC/DC converters for solar energy system with maximum power tracking. In: Proceedings of the 23rd annual international conference on industrial electronics, control, and instrumentation, pp 827–832

    Google Scholar 

  10. Hua C, Shen C (1998) Comparative study of peak power tracking techniques for solar storage system. In: Proceedings of the 13th annual applied power electronics conference and exposition. doi:10.1109/APEC.1998.653972

  11. Isabella O, Jäger K, Smets A, van Swaaij R, Zeman M (2016) Solar energy: the physics and engineering of photovoltaic conversion. Technologies and Systems. UIT Cambridge Ltd., Cambridge, U.K

    Google Scholar 

  12. Lakhekar GV, Waghmare LM, Vaidyanathan S (2016) Diving autopilot design for underwater vehicles using an adaptive neuro-fuzzy sliding mode controller. In: Vaidyanathan S, Volos C (eds) Advances and applications in nonlinear control systems. Springer, Berlin, Germany, pp 477–503

    Chapter  Google Scholar 

  13. McFee RH (1975) Power collection reduction by mirror surface nonflatness and tracking error for a central receiver solar power system. Appl Opt 14:1493–1502

    Article  Google Scholar 

  14. Moussaoui S, Boulkroune A, Vaidyanathan S (2016) Fuzzy adaptive sliding-mode control scheme for uncertain underactuated systems. In: Vaidyanathan S, Volos C (eds) Advances and applications in nonlinear control systems. Springer, Berlin, Germany, pp 351–367

    Chapter  Google Scholar 

  15. Rhif A (2011a) A review note for position control of an autonomous underwater vehicle. IETE Tech Rev 28:486–492

    Article  Google Scholar 

  16. Rhif A (2011b) Position control review for a photovoltaic system: dual axis sun tracker. IETE Tech Rev 28:479–485

    Article  Google Scholar 

  17. Rhif A (2012a) A high order sliding mode control with PID sliding surface: simulation on a torpedo. Int J Inf Tech, Control Autom 2(1):1–13

    Google Scholar 

  18. Rhif A (2012b) Stabilizing sliding mode control design and application for a DC motor: speed control. Int J Instrum Control Syst 2(1):25–33

    Google Scholar 

  19. Rhif A (2014) Sliding mode-multimodel stabilising control using single and several sliding surfaces: simulation on an autonomous underwater vehicle. Int J Model, Ident Control 22(2):126–138

    Article  Google Scholar 

  20. Rhif A, Kardous Z, Braiek NBH (2011) A high order sliding mode-multimodel control of nonlinear systems simulation on a submarine mobile. In: Proceedings of the eighth international multi-conference on systems, signals and devices (SSD-2011), pp 1–6

    Google Scholar 

  21. Rhif A, Kardous Z, Braiek NBH (2012) A high order sliding mode observer: torpedo guidance application. J Eng Tech 2(1):13–18

    Article  Google Scholar 

  22. Roth P, Georgiev A, Boudinov H (2004) Design and construction of a system for sun-tracking. Renew Energy 29(3):393–402

    Article  Google Scholar 

  23. Semma RP, Imamura MS (1980) Sun tracking controller for multi-kW photovoltaic concentrator system. In: Proceedings of the 3rd international photovoltaic solar energy conference, pp 27–31

    Google Scholar 

  24. Slotine J, Li W (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs, NJ, USA

    MATH  Google Scholar 

  25. Sullivan CR, Powers MJ (1993) High-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle. In: Proceedings of the IEEE 24th annual power electronics specialist conference, pp 574–580

    Google Scholar 

  26. Sundarapandian V (2001a) Global observer design for nonlinear systems. Math Comput Model 35(1–2):45–54

    MathSciNet  MATH  Google Scholar 

  27. Sundarapandian V (2001b) Local observer design for nonlinear systems. Math Comput Model 35(1–2):25–36

    MathSciNet  MATH  Google Scholar 

  28. Sundarapandian V (2001c) Observer design for discrete-time nonlinear systems. Math Comput Model 35(1–2):37–44

    MathSciNet  MATH  Google Scholar 

  29. Sundarapandian V (2002a) Nonlinear observer design for bifurcating systems. Math Comput Model 36(1–2):183–188

    Article  MathSciNet  MATH  Google Scholar 

  30. Sundarapandian V (2002b) Nonlinear observer design for discrete-time bifurcating systems. Math Comput Model 36(1–2):211–215

    Article  MathSciNet  MATH  Google Scholar 

  31. Sundarapandian V, Sivaperumal S (2011) Sliding controller design of hybrid synchronization of four-wing chaotic systems. Int J Soft Comput 6(5):224–231

    Article  Google Scholar 

  32. Tofoli FL, de Castro Pereira D, de Paula WJ (2015) Comparative study of maximum power point tracking techniques for photovoltaic systems. Int J Photoenergy 2015. doi:10.1155/2015/812582

  33. Utkin VI (1977) Variable structure systems with sliding modes. IEEE Trans Autom Control 22(2):212–222

    Article  MathSciNet  MATH  Google Scholar 

  34. Utkin VI (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans Ind Electron 40(1):23–36

    Article  Google Scholar 

  35. Vaidyanathan S (2011) Analysis and synchronization of the hyperchaotic Yujun systems via sliding mode control. Adv Intell Syst Comput 176:329–337

    Article  Google Scholar 

  36. Vaidyanathan S (2012a) Global chaos control of hyperchaotic Liu system via sliding control method. Int J Control Theor Appl 5(2):117–123

    Google Scholar 

  37. Vaidyanathan S (2012b) Sliding mode control based global chaos control of Liu-Liu-Liu-Su chaotic system. Int J Control Theor Appl 5(1):15–20

    Google Scholar 

  38. Vaidyanathan S (2014) Global chaos synchronisation of identical Li-Wu chaotic systems via sliding mode control. Int J Model, Ident Control 22(2):170–177

    Article  MathSciNet  Google Scholar 

  39. Vaidyanathan S (2016a) Anti-synchronization of 3-cells cellular neural network attractors via integral sliding mode control. Int J PharmTech Res 9(1):193–205

    Google Scholar 

  40. Vaidyanathan S (2016b) Global chaos regulation of a symmetric nonlinear gyro system via integral sliding mode control. Int J ChemTech Res 9(5):462–469

    Google Scholar 

  41. Vaidyanathan S, Sampath S (2011) Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. Commun Comput Inf Sci 205:156–164

    Google Scholar 

  42. Vaidyanathan S, Volos C (2016a) Advances and applications in chaotic systems. Springer, Berlin, Germany

    Book  MATH  Google Scholar 

  43. Vaidyanathan S, Volos C (2016b) Advances and applications in nonlinear control systems. Springer, Berlin, Germany

    Book  MATH  Google Scholar 

  44. Vaidyanathan S, Volos C (2017) Advances in memristors, memristive devices and systems, Springer, Berlin, Germany

    Google Scholar 

  45. Yousef HA (1999) Design and implementation of a fuzzy logic computer-controlled sun tracking system. In: Proceedings of the IEEE international symposium on industrial electronics. doi:10.1109/ISIE.1999.796768

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundarapandian Vaidyanathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rhif, A., Vaidyanathan, S. (2017). Sliding Mode Control Design for a Sensorless Sun Tracker. In: Vaidyanathan, S., Lien, CH. (eds) Applications of Sliding Mode Control in Science and Engineering. Studies in Computational Intelligence, vol 709. Springer, Cham. https://doi.org/10.1007/978-3-319-55598-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55598-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55597-3

  • Online ISBN: 978-3-319-55598-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics