Green-IT Approach to Design and Optimization of Thermoacoustic Waste Heat Utilization Plant Based on Soft Computing

  • Yuriy Kondratenko
  • Volodymyr Korobko
  • Oleksiy KorobkoEmail author
  • Galyna Kondratenko
  • Oleksiy Kozlov
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 105)


Thermoacoustic devices (TAD) are the newest type of unconventional heat machines. Their work is based on the mutual transformation of heat and acoustic energies. This heat machines are characterized by high sensitivity to the working fluid properties (viscosity, density) as well as the environment effects (temperature, pressure, etc.). An effective work of TAD is possible only if the different nature values of the internal parameters (acoustic, hydrodynamic, thermal) are stabilized. The prospective area for thermoacoustic heat machines is their use in the waste energy recovery systems due to their ability to work with both high potential and low potential supplied heat. As the source of waste heat in such systems can be used the exhaust gases after the catalytic converters, or, taking into account latest results in low potential energy utilization with TAD, even the temperature of cooling water (about 90 °C). This paper is devoted to the synthesis of intelligent digital system for control of thermoacoustic plant with providing optimal working conditions for increasing its efficiency. Authors synthesize the fuzzy controllers of Mamdani and Sugeno types for the created control system. Designed fuzzy controllers are compared with a traditional PD controller in terms of their operation speed and accuracy. Special attention is paid to green-IT approach for design of embedded fuzzy systems by the optimization of fuzzy controllers based on the different type and parameters of linguistic terms for input and output signals as well as on minimization of fuzzy rules quantity in the preliminary synthesized fuzzy rule bases. The results of comparative analysis of initial and optimized fuzzy controllers are discussed in detail.


Specialized computer system Thermoacoustic processes Parametric optimization Green-it approach 


  1. 1.
    Swift, G.W.: Thermoacoustics—A Unifying Perspective for Some Engines and Refrigerators. Acoustical Society of America (2002)Google Scholar
  2. 2.
    Rayleigh, L.: The Theory of Sound, vol. 2, 2nd edn. Dover, NewYork (1945)Google Scholar
  3. 3.
    Bailliet, H., Lotton, P., Bruneau, M., Gusev, V., et al.: Acoustic power flow measurement in a thermoacoustic resonator by means of laser Doppler anemometry (L.D.A.) and microphonic measurement. Appl. Acoust. 60, 1–11 (2000)Google Scholar
  4. 4.
    Wheatley, J.C., Swift, G.W., Migliori, A.: The natural heat engines. Los Alamos Sci 14(2), 2–33 (1986)Google Scholar
  5. 5.
    Mehta, S.M., Desai, K.P., Naik, H.B., Atrey, M.D.: Design of standing wave type thermoacoustic prime mover for 300 hz operating frequency. In: Proceedings of the 16th International Cryocooler Conference, USA, pp. 343–352 (2011)Google Scholar
  6. 6.
    Ryan, T.S.: Design and control of a standing-wave thermoacoustic refrigerator. Dissertation, University of Pittsburgh (2006)Google Scholar
  7. 7.
    Kondratenko, Y., Korobko, V., Korobko, O.: Distributed computer system for monitoring and control of thermoacoustic processes. In: Proceedings of the 7th IEEE International Conference IDAACS’2013, Berlin, Germany, vol. 1, pp. 249–253 (2013). doi: 10.1109/IDAACS.2013.6662682
  8. 8.
    Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds.): Green IT Engineering: Concepts, Models, Complex Systems Architectures, Studies in Systems, Decision and Control, vol. 74. Springer International Publishing, Berlin (2017). doi: 10.1007/978-3-319-44162-7
  9. 9.
    Kharchenko, V., Illiashenko, O.: Concepts of green IT engineering: taxonomy, principles and implementation. In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds.) Green IT Engineering: Concepts, Models, Complex Systems Architectures, Studies in Systems, Decision and Control, vol. 74, pp. 3–20. Springer International Publishing, Berlin (2017). doi: 10.1007/978-3-319-44162-7_1
  10. 10.
    Kondratenko, Y.P., Kondratenko, N.Y.: Reduced library of the soft computing analytic models for arithmetic perations with fuzzy numbers, pp.1–38. In: Case, A. (ed) Soft Computing: Developments, Methods and Applications. Computer Science, Technology and Applications. NOVA Science Publishers, Hauppauge, New York (2016)Google Scholar
  11. 11.
    Kondratenko, Y., Kondratenko, V.: Soft computing algorithm for arithmetic multiplication of fuzzy sets based on universal analytic models. In: Information and Communication Technologies in Education, Research, and Industrial Application. Communications in Computer and Information Science, ICTERI’2014, vol. 469, pp. 49–77. Springer International Publishing, Switzerland (2014). doi: 10.1007/978-3-319-13206-8_3
  12. 12.
    Palagin, A.V., Opanasenko, V.N.: Reconfigurable-computing technology. Cybern. Syst. Anal 43(5), 675–686 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Simon, D.: Training fuzzy systems with the extended Kalman filter. Fuzzy Sets Syst 132, 189–199 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Palagin, A.V., Opanasenko, V.N.: Design and application of the PLD-based reconfigurable devices. Design of Digital Systems and Devices, vol. 79, pp. 59–91. Springer, Berlin (2011). doi: 10.1007/978-3-642-17545-9_3
  15. 15.
    Kondratenko, Y., Korobko, V., Korobko, O., Moskovko, O.: Design of the fuzzy control system for the waste heat utilization plants driven by the thermoacoustic engine. Int. J. Comput 13(2), 88–96 (2014)Google Scholar
  16. 16.
    Fusco, A.M., Ward, W.C., Swift, G.W.: Two-sensor power measurements in lossy ducts. J. Acoust. Soc. Am. 91, 2229–2235 (1992)CrossRefGoogle Scholar
  17. 17.
    Biwa, T., Tashiro, Y., Nomura, H., Ueda, Y.: Experimental verification of a two-sensor acoustic intensity measurement in lossy ducts. J. Acoust. Soc. Am. 124(3), 1584–1590 (2008). doi: 10.1121/1.2953311 CrossRefGoogle Scholar
  18. 18.
    Wolberg, J.: Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments. Springer (2005). doi: 10.1007/3-540-31720-1
  19. 19.
    Maler, O., Pnueli, A., Sifakis, J.: On the Synthesis of Discrete Controllers for Timed Systems. Lecture Notes in Computer Science, vol. 900, pp. 229–242 (1995)Google Scholar
  20. 20.
    Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York, USA (2001)CrossRefGoogle Scholar
  21. 21.
    Drozd, J., Drozd, A., Antoshchuk, S., Kharchenko, V.: Natural development of the resources in design and testing of the computer systems and their components. In: Proceedings of the 7th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, vol. 1, pp. 233–237. Berlin, Germany. (2013)Google Scholar
  22. 22.
    Zadeh, L., Kacprzyk, J.: Fuzzy Logic for the Management of Uncertainty. Wiley, New York (1992)Google Scholar
  23. 23.
    Banks, W., Hayward, G.: Fuzzy Logic in Embedded Microcomputers and Control Systems. Byte Craft Limited. North Waterloo, Ontario, Canada (2002)Google Scholar
  24. 24.
    Amador-Angulo, L., Castillo, O., Pulido, M.: Comparison of fuzzy controllers for the water tank with Type-1 and Type-2 fuzzy logic. In: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 1062–1067 (2013)Google Scholar
  25. 25.
    Pedrycz, W.: On generalized fuzzy relational equations and their applications. J. Math. Anal. Appl. 107, 520–536 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Jamshidi, M., Vadiee, N., Ross, T.J.: Fuzzy Logic and Control. Software and Hardware Applications. PTR Prentice-Hall, Englewood Cliffs, NJ. (1993)Google Scholar
  27. 27.
    Prokopenya, A.N.: Simulation of a quantum algorithm for phase estimation. Program. Comput. Softw 41(2), 98–104 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Trunov, A.N.: An adequacy criterion in evaluating the effectiveness of a model design process. East-Eur. J. Enterp. Technol 1(4), 36–41, 73 pp (2015)Google Scholar
  29. 29.
    Nesterov Y.: Introductory Lectures on Convex Optimization. A Basic Course. Springer (2004)Google Scholar
  30. 30.
    Shapiro, J.F.: Mathematical Programming: Structures and Algorithms. Wiley-Interscience, New York (1979)zbMATHGoogle Scholar
  31. 31.
    Kondratenko, Y.P., Korobko, O.V., Kozlov, O.V.: Synthesis and optimization of fuzzy controller for thermoacoustic plant. In: Zadeh, L.A., et al. (eds.) Recent Developments and New Direction in Soft-Computing Foundations and Applications. Studies in Fuzziness and Soft Computing, vol. 342, pp. 453–467. Springer, Berlin (2016), doi:  10.1007/978-3-319-32229-2_31
  32. 32.
    Yager, R.R., Filev, D.P.: Essentials of Fuzzy Modeling and Control. Wiley (1994)Google Scholar
  33. 33.
    Kondratenko, Y.P., Klymenko, L.P., Al Zu’bi, E.Y.M.: Structural optimization of fuzzy systems’ rules base and aggregation models. Kybernetes 42(5), 831–843 (2013), doi:
  34. 34.
    Kondratenko, Y.P., Altameem, T.A., Al Zubi, E.Y.M.: The optimisation of digital controllers for fuzzy systems design. Adv. Model. Anal. AMSE Periodicals Ser A 47(1–2), 19–29 (2010)Google Scholar
  35. 35.
    Kondratenko, Y.P., Al Zubi, E.Y.M.: The optimisation approach for increasing efficiency of digital fuzzy controllers. In: Annals of DAAAM for 2009 and Proceedings of the 20th International DAAAM Symposium “Intelligent Manufacturing and Automation”, pp. 1589–1591. DAAAM International, Vienna, Austria (2009)Google Scholar
  36. 36.
    Stroustrup, B.: The C++ Programming Language, 1368 pp. Addison-Wesley (2013)Google Scholar
  37. 37.
    Petruzella, F.D.: Programmable logic controllers. Career, 4th edn, 416 pp (2011)Google Scholar
  38. 38.
    Radvanovsky, R., Brodsky, J.: Handbook of SCADA/Control Systems Security, 383 pp. CRC Press (2013)Google Scholar
  39. 39.
    Kondratenko, Y.P., Korobko, O.V., Kozlov, O.V.: PLC-based systems for data acquisition and supervisory control of environment-friendly energy-saving technologies. In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds.) Green IT Engineering: Concepts, Models, Complex Systems Architectures, Studies in Systems, Decision and Control, vol. 74, pp. 247–267. Springer International Publishing, Berlin (2017). doi: 10.1007/978-3-319-44162-7_13
  40. 40.
    Drozd, J., Drozd, A., Antoshchuk, S.: Green IT engineering in the view of resource-based approach. In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds.) Green IT Engineering: Concepts, Models, Complex Systems Architectures, Studies in Systems, Decision and Control, vol. 74, pp. 3–19. Springer International Publishing, Berlin (2017). doi: 10.1007/978-3-319-44162-7_3

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yuriy Kondratenko
    • 1
    • 3
  • Volodymyr Korobko
    • 2
  • Oleksiy Korobko
    • 3
    Email author
  • Galyna Kondratenko
    • 1
    • 3
  • Oleksiy Kozlov
    • 3
  1. 1.Department of Intelligent Information SystemsPetro Mohyla Black Sea National UniversityMykolayivUkraine
  2. 2.Department of Marine and Stationary Power PlantsAdmiral Makarov National University of ShipbuildingMykolayivUkraine
  3. 3.Department of Computer-Aided Control SystemsAdmiral Makarov National University of ShipbuildingMykolayivUkraine

Personalised recommendations