Skip to main content

A Median Nearest Neighbors LDA for Anomaly Network Detection

  • Conference paper
  • First Online:
Codes, Cryptology and Information Security (C2SI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10194))

Abstract

The Linear Discriminant Analysis (LDA) is a powerful linear feature reduction technique. It often produces satisfactory results under two conditions. The first one requires that the global data structure and the local data structure must be coherent. The second concerns data classes distribution nature. It should be a Gaussian distribution. Nevertheless, in pattern recognition problems, especially network anomalies detection, these conditions are not always fulfilled. In this paper, we propose an improved LDA algorithm, the median nearest neighbors LDA (median NN-LDA), which performs well without satisfying the above two conditions. Our approach can effectively get the local structure of data by working with samples that are near to the median of every data class. The further samples will be essential for preserving the global structure of every class. Extensive experiments on two well known datasets namely KDDcup99 and NSL-KDD show that the proposed approach can achieve a promising attack identification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fukunaga, R.: Statistical Pattern Recognition. Academic Press, New York (1990)

    MATH  Google Scholar 

  2. Thapngam, T., Yu, S., Zhou, W.: DDoS discrimination by linear discriminant analysis (LDA). In: 2012 International Conference on Computing, Networking and Communications (ICNC), pp. 532–536. IEEE (2012)

    Google Scholar 

  3. An, W., Liang, M.: A new intrusion detection method based on SVM with minimum within-class scatter. Secur. Commun. Netw. 6(9), 1064–1074 (2013)

    Article  Google Scholar 

  4. Subba, B., Biswas, S., Karmakar, S.: Intrusion detection systems using linear discriminant analysis and logistic regression. In: 2015 Annual IEEE India Conference (INDICON), pp. 1–6. IEEE (2015)

    Google Scholar 

  5. Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recogn. 34(10), 2067–2070 (2001)

    Article  MATH  Google Scholar 

  6. Chen, L.F., Liao, H.Y.M., Ko, M.T., Lin, J.C., Yu, G.J.: A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recogn. 33(10), 1713–1726 (2000)

    Article  Google Scholar 

  7. Jolliffe, I.: Principal Component Analysis. Wiley Online Library (2002)

    Google Scholar 

  8. Zhang, T., Fang, B., Tang, Y.Y., Shang, Z., Xu, B.: Generalized discriminant analysis: a matrix exponential approach. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(1), 186–197 (2010)

    Article  Google Scholar 

  9. Ye, J., Janardan, R., Park, C.H., Park, H.: An optimization criterion for generalized discriminant analysis on under sampled problems. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 982–994 (2004)

    Article  Google Scholar 

  10. Wang, X., Tang, X.: Random sampling for subspace face recognition. Int. J. Comput. Vis. 70(1), 91–104 (2006)

    Article  Google Scholar 

  11. Liu, J., Chen, S., Tan, X.: A study on three linear discriminant analysis based methods in small sample size problem. Pattern Recogn. 41(1), 102–116 (2008)

    Article  MATH  Google Scholar 

  12. Dai, D.Q., Yuen, P.C.: Regularized discriminant analysis and its application to face recognition. Pattern Recogn. 36(3), 845–847 (2003)

    Article  MATH  Google Scholar 

  13. Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: Discriminative common vectors for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 4–13 (2005)

    Article  Google Scholar 

  14. Li, H., Jiang, T., Zhang, K.: Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Netw. 17(1), 157–165 (2006)

    Article  Google Scholar 

  15. Ye, J., Li, Q., Xiong, H., Park, H., Janardan, R., Kumar, V.: IDR/QR: an incremental dimension reduction algorithm via QR decomposition. IEEE Trans. Knowl. Data Eng. 17(9), 1208–1222 (2005)

    Article  Google Scholar 

  16. Pang, S., Ozawa, S., Kasabov, N.: Incremental linear discriminant analysis for classification of data streams. IEEE Trans. Syst. Man Cybern. Part B Cybern. 35(5), 905–914 (2005)

    Article  Google Scholar 

  17. Kim, T.K., Wong, S.F., Stenger, B., Kittler, J., Cipolla, R.: Incremental linear discriminant analysis using sufficient spanning set approximations. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  18. Li, X., Hu, W., Wang, H., Zhang, Z.: Linear discriminant analysis using rotational invariant L1 norm. Neurocomputing 73(13), 2571–2579 (2010)

    Article  Google Scholar 

  19. Wang, H., Lu, X., Hu, Z., Zheng, W.: Fisher discriminant analysis with L1-norm. IEEE Trans. Cybern. 44(6), 828–842 (2014)

    Article  Google Scholar 

  20. Yang, J., Zhang, D., Yang, J.Y.: Median LDA: a robust feature extraction method for face recognition. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2006, vol. 5, pp. 4208–4213. IEEE (2006)

    Google Scholar 

  21. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  22. Sugiyama, M., Idé, T., Nakajima, S., Sese, J.: Semi-supervised local fisher discriminant analysis for dimensionality reduction. Mach. Learn. 78(1–2), 35–61 (2010)

    Article  MathSciNet  Google Scholar 

  23. Chen, H.T., Chang, H.W., Liu, T.L.: Local discriminant embedding and its variants. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 846–853. IEEE (2005)

    Google Scholar 

  24. Wang, H., Chen, S., Hu, Z., Zheng, W.: Locality-preserved maximum information projection. IEEE Trans. Neural Netw. 19(4), 571–585 (2008)

    Article  Google Scholar 

  25. http://kdd.ics.uci.edu/databases/kddcup99/

  26. http://nsl.cs.unb.ca/NSL-KDD/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zyad Elkhadir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Elkhadir, Z., Chougdali, K., Benattou, M. (2017). A Median Nearest Neighbors LDA for Anomaly Network Detection. In: El Hajji, S., Nitaj, A., Souidi, E. (eds) Codes, Cryptology and Information Security. C2SI 2017. Lecture Notes in Computer Science(), vol 10194. Springer, Cham. https://doi.org/10.1007/978-3-319-55589-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55589-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55588-1

  • Online ISBN: 978-3-319-55589-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics