Parameters of 2-Designs from Some BCH Codes

  • Cunsheng DingEmail author
  • Zhengchun Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10194)


It has been known for decades that the codewords of a fixed weight in a code may hold a t-design. However, only a small amount of progress on the construction of t-designs from codes has been made so far. It was also proven that the automorphism groups of the extended codes of the narrow-sense primitive BCH codes over finite fields are doubly transitive and these extended codes hold 2-designs. But little is known about the parameters of these 2-designs. The objective of this extended abstract is to present the parameters of some 2-designs held in these extended codes of some classes of narrow-sense primitive BCH codes.


BCH codes Cyclic codes t-designs Weight distribution 


  1. 1.
    Assmus Jr., E.F., Key, J.D.: Designs and Their Codes. Cambridge University Press, Cambridge (1992)CrossRefzbMATHGoogle Scholar
  2. 2.
    Assmus Jr., E.F., Mattson Jr., H.F.: Coding and combinatorics. SIAM Rev. 16, 349–388 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berger, T., Charpin, P.: The automorphism group of BCH codes and of some affine-invariant codes on an extension field. Des. Codes Crypt. 18, 29–53 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beth, T., Jungnickel, D., Lenz, H.: Design Theory. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Colbourn, C.J., Mathon, R.: Steiner systems. In: Colbourn, C.J., Dinitz, J. (eds.) Handbook of Combinatorial Designs, pp. 102–110. CRC Press, New York (2007)Google Scholar
  6. 6.
    Ding, C.: Codes from Difference Sets. World Scientific, Singapore (2015)Google Scholar
  7. 7.
    Ding, C.: Infinite families of t-designs from a type of five-weight codes. arXiv:1607.04813
  8. 8.
    Ding, C., Fan, C., Zhou, Z.: The dimension and minimum distance of two classes of primitive BCH codes. Finite Fields Appl. 45, 237–263 (2017)CrossRefGoogle Scholar
  9. 9.
    Ding, C., Li, C.: Infinite families of 2-designs and 3-designs from linear codes. arXiv:1607.04813
  10. 10.
    Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Jungnickel, D., Tonchev, V.D.: Exponential number of quasi-symmetric SDP designs and codes meeting the Grey-Rankin bound. Des. Codes Cryptogr. 1, 247–253 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kasami, T.: Weight distributions of Bose-Chaudhuri-Hocquenghem codes. In: Bose, R.C., Dowlings, T.A. (eds.) Combinatorial Mathematics and Applications, Chapter 20. University of North Carolina Press, Chapel Hill (1969)Google Scholar
  13. 13.
    Kennedy, G.T., Pless, V.: A coding-theoretic approach to extending designs. Discrete Math. 142, 155–168 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Khosrovshahi, G.B., Laue, H.: \(t\)-designs with \(t \ge 3\). In: Colbourn, C.J., Dinitz, J. (eds.) Handbook of Combinatorial Designs, pp. 79–101. CRC Press, New York (2007)Google Scholar
  15. 15.
    Kim, J.-L., Pless, V.: Designs in additive codes over GF(\(4\)). Des. Codes Cryptogr. 30, 187–199 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar
  17. 17.
    Pless, V.: Codes and designs-existence and uniqueness. Discrete Math. 92, 261–274 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Reid, C., Rosa, A.: Steiner systems \(S(2, 4)\) - a survey. Electron. J. Comb. (2010). #DS18Google Scholar
  19. 19.
    Tonchev, V.D.: Quasi-symmetric designs, codes, quadrics, and hyperplane sections. Geom. Dedicata 48, 295–308 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Tonchev, V.D.: Codes and designs. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, Vol. II, pp. 1229–1268. Elsevier, Amsterdam (1998)Google Scholar
  21. 21.
    Tonchev, V.D.: Codes. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 677–701. CRC Press, New York (2007)Google Scholar
  22. 22.
    van Lint, J.H.: Introduction to Coding Theory, 3rd edn. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  23. 23.
    Yuan, J., Carlet, C., Ding, C.: The weight distribution of a class of linear codes from perfect nonlinear functions. IEEE Trans. Inf. Theory 52, 712–717 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringThe Hong Kong University of Science and TechnologyHong KongChina
  2. 2.School of MathematicsSouthwest Jiaotong UniversityChengduChina

Personalised recommendations