A New Dynamic Code-Based Group Signature Scheme

  • Berenger Edoukou AyebieEmail author
  • Hafsa Assidi
  • El Mamoun Souidi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10194)


Group signature is a cryptographic primitive where a user can anonymously sign a message on behalf of group users. The dynamic case in group signature is more interesting than the static one. The general idea of this scheme consists in finding a collision between two ciphertexts using two different Quasi-cyclic Moderate Density Parity-Check (QC-MDPC) matrices in McEliece cryptosystem. We use a variation of AGS Zero-Knowledge protocol to prove the possession of the secret key and then we use the Fiat Shamir transformation to turn it into a signature. The public key and signature sizes are constants and independent of group users size and are shorter than those presented in the literature for 80 bits security level. Furthermore the proposed group signature scheme presents several advantages: it is a dynamic group signature based on error correcting code assumptions which are supposed resistant to quantum computing.


Dynamic group signature Code-based cryptography QC-MDPC codes McEliece cryptosystem General decoding problem 


  1. 1.
    Aguilar Melchor, C., Gaborit, P., Schrek, J.: A new zero-knowledge code based identification scheme with reduced communication. In: 2011 IEEE Information Theory Workshop, pp. 648–652. IEEE Press, Paraty (2011)Google Scholar
  2. 2.
    Alamélou, Q., Blazy, O., Cauchie, S., Gaborit, P.: A code-based group signature scheme. In: WCC 2015. LNCS, vol. 942, pp. 260–285. Springer, Heidelberg (2015)Google Scholar
  3. 3.
    Chaum, D., Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). doi: 10.1007/3-540-46416-6_22 CrossRefGoogle Scholar
  4. 4.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000). doi: 10.1007/3-540-44598-6_16 CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28628-8_3 CrossRefGoogle Scholar
  6. 6.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28628-8_4 CrossRefGoogle Scholar
  7. 7.
    Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-free group signature schemes from bilinear pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30539-2_26 CrossRefGoogle Scholar
  8. 8.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st CCS, pp. 62–73 (1993)Google Scholar
  9. 9.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). doi: 10.1007/3-540-39200-9_38 CrossRefGoogle Scholar
  10. 10.
    Kiayias, A., Yung, M.: Extracting group signatures from traitor tracing schemes. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 630–648. Springer, Heidelberg (2003). doi: 10.1007/3-540-39200-9_39 CrossRefGoogle Scholar
  11. 11.
    Kiayias, A., Yung, M.: Group Signatures with Efficient Concurrent Join. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer, Heidelberg (2005). doi: 10.1007/11426639_12 CrossRefGoogle Scholar
  12. 12.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-30574-3_11 CrossRefGoogle Scholar
  13. 13.
    Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signatures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-42045-0_3 CrossRefGoogle Scholar
  14. 14.
    Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54631-0_20 CrossRefGoogle Scholar
  15. 15.
    Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter, shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46447-2_19 Google Scholar
  16. 16.
    Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17373-8_23 CrossRefGoogle Scholar
  17. 17.
    Ezerman, M.F., Lee, H.T., Ling, S., Nguyen, K., Wang, H.: A provably secure group signature scheme from code-based assumptions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 260–285. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_12 CrossRefGoogle Scholar
  18. 18.
    Assidi, H., Ayebie, E.B., Souidi, E.M.: A code-based group signature scheme with shorter public key length. In: ICETE 2016: SECRYPT, vol. 4, pp. 432–439. SciTePress, Lisbon, July 2016Google Scholar
  19. 19.
    Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.S.: MDPC-McEliece: new Mceliece variants from moderate density parity-check codes. In: IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2069–2073 (2013)Google Scholar
  20. 20.
    Berlekamp, E.R., McEliece, R.J., Van Tilborg, H.C.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theor. 24(3), 384–386 (1978)Google Scholar
  21. 21.
    Blazy, O.: Preuves de connaissance interactives et non-interactives. Part 1, Chap. 3. Ph.D. thesis, University Paris VII - Denis Diderot, September 2012Google Scholar
  22. 22.
    Véron, P.: Improved identification schemes based on error-correcting codes. Appl. Algebra Eng. Commun. Comput. 8(1), 57–69 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989). doi: 10.1007/BFb0019850 CrossRefGoogle Scholar
  24. 24.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). doi: 10.1007/3-540-47721-7_12 CrossRefGoogle Scholar
  25. 25.
    Poincheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptology 13(3), 361–396 (2000)CrossRefzbMATHGoogle Scholar
  26. 26.
    Yousfi Alaoui, S.M., Dagdelen, Ö., Véron, P., Galindo, D., Cayrel, P.-L.: Extended security arguments for signature schemes. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 19–34. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31410-0_2 CrossRefGoogle Scholar
  27. 27.
    Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001). doi: 10.1007/3-540-45682-1_10 CrossRefGoogle Scholar
  28. 28.
    Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53887-6_29 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Berenger Edoukou Ayebie
    • 1
    Email author
  • Hafsa Assidi
    • 1
  • El Mamoun Souidi
    • 1
  1. 1.Laboratory of Mathematics, Computer Science and Applications, Faculty of SciencesMohammed V University in RabatRabatMorocco

Personalised recommendations