Efficient Implementation of Hybrid Encryption from Coding Theory

  • Pierre-Louis Cayrel
  • Cheikh Thiecoumba Gueye
  • El Hadji Modou Mboup
  • Ousmane Ndiaye
  • Edoardo PersichettiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10194)


In this work we present an efficient implementation of the Hybrid Encryption scheme based on the Niederreiter PCKS proposed by E. Persichetti.

To achieve IND-CCA2 security (in the random oracle model), we use an HMAC function of the message and the symmetric key, and then apply AES128-CBC as the data encapsulation part of this hybrid scheme. The HMAC function is based on SHA3-512. In addition, we introduce a modification in the decapsulation algorithm, to resist a reaction attack first proposed by Bernstein et al.

The implementation is done in C on Intel core i3 CPU and 4 GB RAM and 64 bit OS. The code is running Debian/Linux 3.5.2, where the source has been compiled with gcc 4.7.


KEM-DEM Niederreiter PKCS Code-based cryptography Random oracle 



This work was carried out with financial support of CEA-MITIC for CBC projet and financial support from the government of Senegal’s Ministry of Hight Education and Research for ISPQ Project.


  1. 1.
    Bernstein, D.J., Chou, T., Schwabe, P.: McBits: fast constant-time code-based cryptography. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 250–272. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40349-1_15 CrossRefGoogle Scholar
  2. 2.
    Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime (2016).
  3. 3.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput.33, 167–226 (2004). Society for Industrial and Applied Mathematics, PhiladelphiaGoogle Scholar
  4. 4.
    Alrashdan, M.T., Moghaddam, F.F., Karimi, O.: A hybrid encryption algorithm based on RSA small-e and efficient-RSA for cloud computing environments. J. Adv. Comput. Netw. 1(3), 238–241 (2013)Google Scholar
  5. 5.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Jet Propulsion Laboratory DSN Progress Report 42–44, pp. 114–116 (1978)Google Scholar
  6. 6.
    Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. In: Problems of Control and Information Theory, vol. 15, pp. 159–166 (1986)Google Scholar
  7. 7.
    Persichetti, E.: Secure and anonymous hybrid encryption from coding theory. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 174–187. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38616-9_12 CrossRefGoogle Scholar
  8. 8.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (1994)Google Scholar
  9. 9.
    Turan, M.S., Barker, E.B., Burr, W.E., Chen, L.: Sp 800–132, Recommendation for password-based key derivation: Part 1: storage applications. National Institute of Standards & Technology, Gaithersburg (2010)Google Scholar
  10. 10.
    Maurich, I., Heberle, L., Güneysu, T.: IND-CCA secure hybrid encryption from QC-MDPC niederreiter. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 1–17. Springer, Cham (2016). doi: 10.1007/978-3-319-29360-8_1 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pierre-Louis Cayrel
    • 1
  • Cheikh Thiecoumba Gueye
    • 2
  • El Hadji Modou Mboup
    • 2
  • Ousmane Ndiaye
    • 2
  • Edoardo Persichetti
    • 3
    Email author
  1. 1.Laboratoire Hubert CurienUMR CNRS 5516Saint-EtienneFrance
  2. 2.Université Cheikh Anta Diop de Dakar, FST, DMI, LACGAADakarSenegal
  3. 3.Department of Mathematical SciencesFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations