Advertisement

A NP-Complete Problem in Coding Theory with Application to Code Based Cryptography

  • Thierry P. Berger
  • Cheikh Thiécoumba Gueye
  • Jean Belo KlamtiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10194)

Abstract

It is easy to determine if a given code \(\mathcal {C}\) is a subcode of another known code \(\mathcal {D}\). For most of occurrences, it is easy to determine if two codes \(\mathcal {C}\) and \(\mathcal {D}\) are equivalent by permutation. In this paper, we show that determining if a code \(\mathcal {C}\) is equivalent to a subcode of \(\mathcal {D}\) is a NP-complete problem. We give also some arguments to show why this problem seems much harder to solve in practice than the Equivalence Punctured Code problem or the Punctured Code problem proposed by Wieschebrink [21]. For one application of this problem we propose an improvement of the three-pass identification scheme of Girault and discuss on its performance.

Keywords

Code-based cryptography Equivalence Subcode Identification scheme 

Notes

Acknowlegment

This work was carried out with financial support of CEA-MITIC for CBC project and financial support of the government of Senegal’s Ministry of Hight Education and Research for ISPQ project.

References

  1. 1.
    Barg, A.: Some new NP-complete coding problems. Problemy Peredachi Informatsii 30(3), 23–28 (1994). English translation in Probl. Inform. Trans. 30, 209–214, July–September 1994Google Scholar
  2. 2.
    Berger, T.P.: New perspectives for code-based public key cryptography. In: Codes and Lattices in Cryptography, CLC 2006, Darmstadt (2006)Google Scholar
  3. 3.
    Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02384-2_6 CrossRefGoogle Scholar
  4. 4.
    Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic use. Des. Codes Crypt. 35, 63–79 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berlekamp, E., McEliece, R.J., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theor. 24(3), 384–386 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cayrel, P.L., Diagne, M.K., Gueye, C.T.: NP-completeness of the Coset weight problem for Quasi-dyadic codes. In: International Conference on Coding theory and Cryptography ICCC 2015, Alger, Algeria (2015)Google Scholar
  7. 7.
    Cayrel, P.-L., Véron, P., Yousfi Alaoui, S.M.: A zero-knowledge identification scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19574-7_12 CrossRefGoogle Scholar
  8. 8.
    Garey, E., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  9. 9.
    Girault, M.: A (non-practical) three-pass identification protocol using coding theory. In: Seberry, J., Pieprzyk, J. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 265–272. Springer, Heidelberg (1990). doi: 10.1007/BFb0030367 CrossRefGoogle Scholar
  10. 10.
    Gaborit, P., Girault, M.: Lightweight code-based authentication and signature. In: ISIT (2007)Google Scholar
  11. 11.
    Harari, S.: A new authentication algorithm. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 91–105. Springer, Heidelberg (1989). doi: 10.1007/BFb0019849 CrossRefGoogle Scholar
  12. 12.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Jet Propulsion Lab. DSN Progress Report, Technical report (1978)Google Scholar
  13. 13.
    Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-05445-7_24 CrossRefGoogle Scholar
  14. 14.
    Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theor. 15(2), 159–166 (1986)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Trans. Inf. Theory 43(5), 1602–1604 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sendrier, N.: Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Trans. Inf. Theor. 46(4), 1193–1203 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sendrier, N., Simos, D.E.: The hardness of code equivalence over \(\mathbb{F}_q\) and its application to code-based cryptography. In: Proceeding of Post-Quantum Cryptography, 5th International Workshop PQcrupto 2013, Limoges, France (2013)Google Scholar
  18. 18.
    Sidel’nikov, V.M., Shestakov, S.O.: On cryptosystems based on generalized Reed-Solomon codes. Discrete Math. 4(3), 57–63 (1992)zbMATHGoogle Scholar
  19. 19.
    Sendrier, N., Simos, D.E.: How easy is code equivalence over \(\mathbb{F}_q\)? In: Proceedings of the 8th International Workshop on Coding and Cryptography, WCC 2013 (2013, to appear). https://www.rocq.inria.fr/secret/PUBLICATIONS/codeq3.pdf. Preprint (2012)
  20. 20.
    Vardy, A.: The intractability of computing the minimum distance of a code. IEEE Trans. Inf. Theor. 43(6), 1757–1766 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wieschebrink, C.: Two NP-complete problems in coding theory with an application in code based cryptography. In: Proceedings of IEEE ISIT 2006, Seattle, USA, pp. 1733–1737 (2006)Google Scholar
  22. 22.
    Wieschebrink, C.: An attack on a modified niederreiter encryption scheme. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 14–26. Springer, Heidelberg (2006). doi: 10.1007/11745853_2 CrossRefGoogle Scholar
  23. 23.
    Stern, J.: An alternative to the Fiat-Shamir protocol. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 173–180. Springer, Heidelberg (1990). doi: 10.1007/3-540-46885-4_19 Google Scholar
  24. 24.
    Véron, P.: Improved identification schemes based on error-correcting codes. Appl. Algebra Eng. Commun. Comput. 8(1), 57–69 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994). doi: 10.1007/3-540-48329-2_2 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thierry P. Berger
    • 1
  • Cheikh Thiécoumba Gueye
    • 2
  • Jean Belo Klamti
    • 2
    Email author
  1. 1.XLIM-MATHIS, UMR CNRS 6172, Université de limogesLimoges CedexFrance
  2. 2.Faculté des Sciences et Techniques, Université Cheikh Anta Diop, DMI, LACGAADakarSenegal

Personalised recommendations