Advertisement

Revisiting the Efficient Key Generation of ZHFE

  • Yasuhiko IkematsuEmail author
  • Dung H. Duong
  • Albrecht Petzoldt
  • Tsuyoshi Takagi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10194)

Abstract

ZHFE, proposed by Porras et al. at PQCrypto’14, is one of the very few existing multivariate encryption schemes and a very promising candidate for post-quantum cryptosystems. The only one drawback is its slow key generation. At PQCrypto’16, Baena et al. proposed an algorithm to construct the private ZHFE keys, which is much faster than the original algorithm, but still inefficient for practical parameters. Recently, Zhang and Tan proposed another private key generation algorithm, which is very fast but not necessarily able to generate all the private ZHFE keys. In this paper we propose a new efficient algorithm for the private key generation of the ZHFE scheme. Our algorithm reduces the complexity from \(O(n^{2\omega +1})\) by Baena et al. to \(O(n^{\omega +3})\), where n is the number of variables and \(2<\omega <3\) is a linear algebra constant. We also estimate the number of possible keys generated by all existing private key generation algorithms for ZHFE. Our algorithm generates as many private ZHFE keys as the original and Baena et al.’s ones. This makes our algorithm be the best appropriate for the ZHFE scheme.

Keywords

Post quantum cryptography Multivariate cryptography Encryption schemes ZHFE 

Notes

Acknowledgments

This work was supported by CREST, JST. The second author also acknowledges the Japanese Society for the Promotion of Science (JSPS) for financial support under grant KAKENHI 16K17644.

Supplementary material

References

  1. 1.
    Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Baena, J.B., Cabarcas, D., Escudero, D.E., Porras-Barrera, J., Verbel, J.A.: Efficient ZHFE key generation. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 213–232. Springer, Cham (2016). doi: 10.1007/978-3-319-29360-8_14 CrossRefGoogle Scholar
  3. 3.
    Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-key engines: \(\cal{MQ}\)-cryptosystems as replacement for elliptic curves? In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85053-3_4 CrossRefGoogle Scholar
  4. 4.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symbolic Comput. 24(3–4), 235–265 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H., Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04138-9_3 CrossRefGoogle Scholar
  6. 6.
    Courtois, N.T.: The security of hidden field equations (HFE). In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 266–281. Springer, Heidelberg (2001). doi: 10.1007/3-540-45353-9_20 CrossRefGoogle Scholar
  7. 7.
    Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  8. 8.
    Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). doi: 10.1007/11496137_12 CrossRefGoogle Scholar
  9. 9.
    Goodin, D.: NSA preps quantum-resistant algorithms to head off crypto-apocalypse. http://arstechnica.com/security/2015/08/nsa-preps-quantum-resistant-al-gorithms-to-head-off-crypto-apocolypse/
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H Freeman and Company, New York (1979)zbMATHGoogle Scholar
  11. 11.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). doi: 10.1007/3-540-48910-X_15 CrossRefGoogle Scholar
  12. 12.
    Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999). doi: 10.1007/3-540-48405-1_2 CrossRefGoogle Scholar
  13. 13.
    Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Barstow, D., Brauer, W., Brinch Hansen, P., Gries, D., Luckham, D., Moler, C., Pnueli, A., Seegmüller, G., Stoer, J., Wirth, N., Günther, C.G. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). doi: 10.1007/3-540-45961-8_39 CrossRefGoogle Scholar
  14. 14.
    National Institute of Standards and Technology: Report on Post Quantum Cryptography, NISTIR draft 8105. http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
  15. 15.
    Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of eurocrypt 88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995). doi: 10.1007/3-540-44750-4_20 CrossRefGoogle Scholar
  16. 16.
    Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). doi: 10.1007/3-540-68339-9_4 CrossRefGoogle Scholar
  17. 17.
    Perlner, R., Smith-Tone, D.: Security analysis and key modification for ZHFE. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 197–212. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-29360-8_13 CrossRefGoogle Scholar
  18. 18.
    Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_14 CrossRefGoogle Scholar
  19. 19.
    Porras, J., Baena, J., Ding, J.: New candidates for multivariate trapdoor functions. Cryptology ePrint Archive, Report 2014/387 (2014)Google Scholar
  20. 20.
    Porras, J., Baena, J., Ding, J.: ZHFE, a new multivariate public key encryption scheme. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 229–245. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11659-4_14 Google Scholar
  21. 21.
    Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38616-9_16 CrossRefGoogle Scholar
  23. 23.
    Szepieniec, A., Ding, J., Preneel, B.: Extension field cancellation: a new central trapdoor for multivariate quadratic systems. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 182–196. Springer, Cham (2016). doi: 10.1007/978-3-319-29360-8_12 CrossRefGoogle Scholar
  24. 24.
    Zhang, W., Tan, C.H.: On the Security and key generation of the ZHFE encryption scheme. In: Ogawa, K., Yoshioka, K. (eds.) IWSEC 2016. LNCS, vol. 9836, pp. 289–304. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-44524-3_17 CrossRefGoogle Scholar
  25. 25.
    Yasuda, T., Sakurai, K.: A multivariate encryption scheme with rainbow. In: Qing, S., Okamoto, E., Kim, K., Liu, D. (eds.) ICICS 2015. LNCS, vol. 9543, pp. 236–251. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-29814-6_19 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yasuhiko Ikematsu
    • 1
    Email author
  • Dung H. Duong
    • 1
  • Albrecht Petzoldt
    • 1
  • Tsuyoshi Takagi
    • 1
  1. 1.Institute of Mathematics for IndustryKyushu UniversityFukuokaJapan

Personalised recommendations