On Isodual Cyclic Codes over Finite Chain Rings

  • Aicha BatoulEmail author
  • Kenza Guenda
  • T. Aaron Gulliver
  • Nuh Aydin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10194)


In this work, cyclic isodual codes over finite chain rings are investigated. These codes are monomially equivalent to their duals. Existence results for cyclic isodual codes are given based on the generator polynomials, the field characteristic, and the length. Several constructions of isodual and self-dual codes are also presented.


Isodual codes Self-dual codes Cyclic codes Finite chain rings Codes over rings 


  1. 1.
    Bachoc, C., Gulliver, T.A., Harada, M.: Isodual codes over \(Z_{2k}\) and isodual lattices. J. Algebra. Combin. 12, 223–240 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Batoul, A., Guenda, K., Gulliver, T.A.: On self-dual cyclic codes over finite chain rings. Des. Codes Cryptogr. 70(3), 347–358 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Batoul, A., Guenda, K., Gulliver, T.A.: Repeated-root isodual cyclic codes over finite fields. In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E.M. (eds.) C2SI 2015. LNCS, vol. 9084, pp. 119–132. Springer, Cham (2015). doi: 10.1007/978-3-319-18681-8_10 Google Scholar
  4. 4.
    Batoul, A., Guenda, K., Kaya, A., Yildiz, B.: Cyclic isodual and formally self-dual codes over \(\mathbb{F}_q+v\mathbb{F}_q\). EJPAM 8(1), 64–80 (2015)Google Scholar
  5. 5.
    Batoul, A., Guenda, K., Gulliver, T.A.: Some constacyclic codes over finite chain rings. Adv. Math Commun. 10(4), 683–694 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Batoul, A., Guenda, K., Gulliver, T.A.: Constacyclic codes over finite principal ideal rings. In: C2SI (2017, accepted)Google Scholar
  7. 7.
    Dinh, H., López-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory 50, 1728–1744 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Greferath, M., Schmidt, S.E.: Finite-ring combinatorics and Macwilliams’ equivalence theorem. J. Combin. Theory A 92(1), 17–28 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ganske, G., McDonald, B.R.: Finite local rings. Rocky Mountain J. Math. 3(4), 521–540 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Guenda, K., Gulliver, T.A.: MDS and self-dual codes over rings. Finite Fields Appl. 18(6), 1061–1075 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Honold, T., Nechaev, A.: Weighted modules and representation of codes. Tech. Univ. Menchen, Fak. Math Report, Beitrage Zur Geometrie and Algebra, 36 (1998)Google Scholar
  12. 12.
    Jia, Y., Ling, S., Xing, C.: On self-dual cyclic codes over finite fields. IEEE Trans. Inform. Theory 57(4), 2243–2251 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Langevin, P.: Duadic \(\mathbb{Z}_{4}\)-codes. Finite Fields Appl. 6, 309–326 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Norton, G.H., Sălăgean, A.: On the structure of linear and cyclic codes over a finite chain ring. Finite Fields Appl. 10, 489–506 (2000)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Ling, S., Solé, P.: Duadic codes over \(F_{2} + uF_{2}\). AAECC, 365–379 (2001). doi: 10.1007/s002000100079
  16. 16.
    Wood, J.A.: Extension theorems for linear codes over finite rings. In: Mora, T., Mattson, H. (eds.) AAECC 1997. LNCS, vol. 1255, pp. 329–340. Springer, Heidelberg (1997). doi: 10.1007/3-540-63163-1_26 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Aicha Batoul
    • 1
    Email author
  • Kenza Guenda
    • 1
  • T. Aaron Gulliver
    • 2
  • Nuh Aydin
    • 3
  1. 1.Faculty of MathematicsUniversity of Science and TechnologyAlgiersAlgeria
  2. 2.Department of Electrical and Computer EngineeringUniversity of VictoriaVictoriaCanada
  3. 3.Department of Mathematics and StatisticsKenyon CollegeGambierUSA

Personalised recommendations