Advertisement

Constacyclic Codes over Finite Principal Ideal Rings

  • Aicha BatoulEmail author
  • Kenza Guenda
  • T. Aaron Gulliver
  • Nuh Aydin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10194)

Abstract

In this paper, we study constacyclic codes over finite principal ideal rings. An isomorphism between constacyclic codes and cyclic codes over finite principal ideal rings is given. Further, an open question is partially answered by giving necessary and sufficient conditions for the existence of non-trivial cyclic self-dual codes over finite principal ideal rings. As an example of codes over a finite principal ideal ring, we study constacyclic codes over \(R+vR\) where \(v^2=v\) and R is a finite chain ring.

Keywords

Codes over principal ideal rings Self-dual codes Cyclic codes Constacyclic codes 

References

  1. 1.
    Bannai, E., Dougherty, S.T., Harada, M., Oura, M.: Type II codes, even unimodular lattices and invariant rings. IEEE Trans. Inform. Theory 45(4), 1194–1205 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Batoul, A., Guenda, K., Gulliver, T.A.: On self-dual cyclic codes over finite chain rings. Des. Codes Cryptogr. 70(3), 347–358 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Batoul, A., Guenda, K., Kaya, A., Yildiz, B.: Cyclic isodual and formally self-dual codes over \(\mathbb{F}_q+v\mathbb{F}_q\). EJPAM 8(1), 64–80 (2015)Google Scholar
  4. 4.
    Batoul, A., Guenda, K., Gulliver, T.A.: Some constacyclic codes over finite chain rings. Adv. Math Commun. 10(4), 683–694 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bonnecaze, A., Solé, P., Calderbank, A.R.: Quaternary quadratic residue codes and unimodular lattices. IEEE Trans. Inform. Theory 41(2), 366–377 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dinh, H., López-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory 50(8), 1728–1744 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dougherty, S.T., Kim, J.-L., Kulosman, H.: MDS codes over finite principal ideal rings. Des. Codes Cryptogr. 50(1), 77–92 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dougherty, S.T., Harada, M., Solé, P.: Self-dual codes over rings and the Chinese remainder theorem. Hokkaido Math. J. 28, 253–283 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Guenda, K., Gulliver, T.A.: MDS and self-dual codes over rings. Finite Fields Appl. 18(6), 1061–1075 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The \(Z_4\) linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kanwar, P., López-Permouth, S.R.: Cyclc codes over the integers modulo \(\rm {p}^{\text{ m }}\). Finite Fields Appl. 3(4), 334–352 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Liao, D., Tang, Y.: A class of constacyclic codes over \(R+vR\) and its Gray image. Int. J. Commun. Netw. Syst. Sci. 5, 222–227 (2012)Google Scholar
  13. 13.
    McDonald, B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974)zbMATHGoogle Scholar
  14. 14.
    Norton, G.H., Sălăgean, A.: On the structure of linear and cyclic codes over a finite chain ring. Appl. Algebra Eng. Comm. Comput. 10(6), 489–506 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rains, E., Sloane, N.J.A.: Self-dual codes. In: Pless, V.S., Human, W.C. (eds.) Handbook of Coding Theory, pp. 177–294. Elsevier, Amsterdam (1998)Google Scholar
  16. 16.
    Zhu, S.X., Wang, L.: A class of constacyclic codes over \(\mathbb{F}_{p}+v\mathbb{F}_{p}\) and its Gray image. Disc. Math. 311(9), 2677–2682 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Aicha Batoul
    • 1
    Email author
  • Kenza Guenda
    • 1
  • T. Aaron Gulliver
    • 2
  • Nuh Aydin
    • 3
  1. 1.Faculty of MathematicsUniversity of Science and TechnologyAlgiersAlgeria
  2. 2.Department of Electrical and Computer EngineeringUniversity of VictoriaVictoriaCanada
  3. 3.Department of Mathematics and Statistics, Kenyon CollegeGambierUSA

Personalised recommendations