Some Results on the Known Classes of Quadratic APN Functions

  • Lilya Budaghyan
  • Tor Helleseth
  • Nian LiEmail author
  • Bo Sun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10194)


In this paper, we determine the Walsh spectra of three classes of quadratic APN functions and we prove that the class of quadratic trinomial APN functions constructed by Göloğlu is affine equivalent to Gold functions.


APN function Quadratic function Walsh spectrum 


  1. 1.
    Beth, T., Ding, C.: On almost perfect nonlinear permutations. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 65–76. Springer, Heidelberg (1994). doi: 10.1007/3-540-48285-7_7 Google Scholar
  2. 2.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4(1), 3–72 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bracken, C., Byrne, E., Markin, N., McGuire, G.: A few more quadratic APN functions. Crypt. Commun. 3(1), 43–53 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bracken, C., Byrne, E., Markin, N., McGuire, G.: New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields Appl. 14(3), 703–714 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bracken, C., Byrne, E., Markin, N., McGuire, G.: On the Walsh spectrum of a new APN function. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 92–98. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-77272-9_6 CrossRefGoogle Scholar
  6. 6.
    Bracken, C., Byrne, E., Markin, N., McGuire, G.: On the Fourier spectrum of binomial APN functions. SIAM J. Discrete Math. 23(2), 596–608 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bracken, C., Byrne, E., Markin, N., McGuire, G.: Determining the nonlinearity of a new family of APN functions. In: Boztaş, S., Lu, H.-F.F. (eds.) AAECC 2007. LNCS, vol. 4851, pp. 72–79. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-77224-8_11 CrossRefGoogle Scholar
  8. 8.
    Bracken, C., Zha, Z.: On the Fourier spectra of the infinite families of quadratic APN functions. Finite Fields Appl. 18(3), 537–546 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brinkmann, M., Leander, G.: On the classification of APN functions up to dimension five. Des. Codes Crypt. 49(1–3), 273–288 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Browning, A.K., Dillon, F.J., Kibler, E.R., McQuistan, T.M.: APN polynomials and related codes. J. Comb. Inf. Syst. Sci. 34(1–4), 135–159 (2009). Special Issue in Honor of Prof. D.K Ray-Chaudhuri on the occasion of his 75th birthdayGoogle Scholar
  11. 11.
    Browning, A.K., Dillon, F.J., McQuistan, T.M., Wolfe, J.A.: An APN permutation in dimension six. In: Post-proceedings of the 9-th International Conference on Finite Fields and Their Applications Fq 2009, Contemporary Math, AMS, vol. 518, pp. 33–42 (2010)Google Scholar
  12. 12.
    Budaghyan, L., Carlet, C.: Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Trans. Inform. Theor. 54(5), 2354–2357 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Budaghyan, L., Carlet, C., Leander, G.: Two classes of quadratic APN binomials inequivalent to power functions. IEEE Trans. Inform. Theor. 54(9), 4218–4229 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Budaghyan, L., Carlet, C., Leander, G.: Constructing new APN functions from known ones. Finite Fields Appl. 15(2), 150–159 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Budaghyan, L., Carlet, C., Leander, G.: On a construction of quadratic APN functions. In: IEEE Information Theory Workshop, pp. 374–378 (2009)Google Scholar
  16. 16.
    Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect nonlinear functions. IEEE Trans. Inform. Theor. 52(3), 1141–1152 (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Canteaut, A., Charpin, P., Dobbertin, H.: Binary \(m\)-sequences with three-valued crosscorrelation: a proof of Welch’s conjecture. IEEE Trans. Inform. Theor. 46(1), 4–8 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Carlet, C.: Relating three nonlinearity parameters of vectorial functions and building APN functions from bent functions. Des. Codes Crypt. 59(1–3), 89–109 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Carlet, C.: Vectorial Boolean functions for cryptography. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models. Cambridge University Press (2005–2006, to appear). Chapter of the MonographyGoogle Scholar
  20. 20.
    Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Crypt. 15(2), 125–156 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995). doi: 10.1007/BFb0053450 Google Scholar
  22. 22.
    Dobbertin, H.: Almost perfect nonlinear power functions over \(GF(2^n)\): the Niho case. Inform. Comput. 151, 57–72 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Dobbertin, H.: Almost perfect nonlinear power functions over \(GF(2^n)\): the Welch case. IEEE Trans. Inform. Theor. 45, 1271–1275 (1999)CrossRefzbMATHGoogle Scholar
  24. 24.
    Dobbertin, H.: Almost perfect nonlinear power functions over \(GF(2^n)\): a new case for \(n\) divisible by 5. In: Proceedings of Finite Fields and Applications Fq5, pp. 113–121 (2000)Google Scholar
  25. 25.
    Dobbertin, H.: Another proof of Kasami’s theorem. Des. Codes Crypt. 17, 177–180 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Edel, Y.: Quadratic APN functions as subspaces of alternating bilinear forms. In: Contact Forum Coding Theory and Cryptography III 2009, Belgium, pp. 11–24 (2011)Google Scholar
  27. 27.
    Edel, Y., Pott, A.: A new almost perfect nonlinear function which is not quadratic. Adv. Math. Commun. 3(1), 59–81 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Gold, R.: Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Trans. Inform. Theor. 14, 154–156 (1968)CrossRefzbMATHGoogle Scholar
  29. 29.
    Göloğlu, F.: Almost perfect nonlinear trinomials and hexanomials. Finite Fields Appl. 33, 258–282 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Hollmann, H., Xiang, Q.: A proof of the Welch and Niho conjectures on crosscorrelations of binary \(m\)-sequences. Finite Fields Appl. 7, 253–286 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Janwa, H., Wilson, R.M.: Hyperplane sections of fermat varieties in \(P^{3}\) in char. 2 and some applications to cyclic codes. In: Cohen, G., Mora, T., Moreno, O. (eds.) AAECC 1993. LNCS, vol. 673, pp. 180–194. Springer, Heidelberg (1993). doi: 10.1007/3-540-56686-4_43 CrossRefGoogle Scholar
  32. 32.
    Kasami, T.: The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. Inform. Control 18, 369–394 (1971)CrossRefzbMATHGoogle Scholar
  33. 33.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). doi: 10.1007/3-540-48285-7_33 Google Scholar
  34. 34.
    Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994). doi: 10.1007/3-540-48285-7_6 Google Scholar
  35. 35.
    Nyberg, K.: Perfect nonlinear S-boxes. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991). doi: 10.1007/3-540-46416-6_32 Google Scholar
  36. 36.
    Tan, Y., Qu, L., Ling, S., Tan, C.H.: On the Fourier spectra of new APN functions. SIAM J. Discrete Math. 27(2), 791–801 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Yu, Y., Wang, M., Li, Y.: A matrix approach for constructing quadratic APN functions. In: Pre-proceedings of the International Conference WCC 2013, Bergen, Norway (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lilya Budaghyan
    • 1
  • Tor Helleseth
    • 1
  • Nian Li
    • 1
    Email author
  • Bo Sun
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations