Skip to main content

Convergence and Regularization of Sampling Series

  • Chapter
  • First Online:
  • 899 Accesses

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This chapter consists of an overview of recent results concerning the convergence and regularization of the quintessential sampling series, the cardinal sine series. Conditions, that go beyond those associated with the standard theory, are formulated that ensure reconstruction by this series. The conditions are one of two types: (i) on the coefficients or samples or (ii) on the functions or signals being reconstructed. A class of regularization methods, that in effect consist of mollifications of cardinal sine series, is discussed. One of the highlights is a result that shows how piecewise polynomial splines and certain variants can be regarded as such mollifications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (Dover Publications, New York, 1966), xiv+1046 pp.

    Google Scholar 

  2. B.A. Bailey, Multivariate polynomial interpolation and sampling in Paley-Wiener spaces. J. Approx. Theory 164(4), 460–487 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. B.A. Bailey, W.R. Madych, Convergence of classical cardinal series and band limited special functions. J. Fourier Anal. Appl. 19(6), 1207–1228 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. B.A. Bailey, W.R. Madych, Functions of exponential type and the cardinal series. J. Approx. Theory 181, 54–72 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. B.A. Bailey, W.R. Madych, Cardinal sine series: convergence and uniqueness. Sampl. Theory Signal Image Process. 13(1), 21–33 (2014)

    MathSciNet  MATH  Google Scholar 

  6. B.A. Bailey, W.R. Madych, Cardinal sine series, oversampling, and periodic distributions. Proc. Am. Math. Soc. 143(10), 4373–4382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. B.A. Bailey, W.R. Madych, Cardinal sine series: oversampling and non-existence, preprint

    Google Scholar 

  8. B.A. Bailey, W.R. Madych, Convergence and summability of cardinal sine series, preprint

    Google Scholar 

  9. B.A. Bailey, T. Schlumprecht, N. Sivakumar, Nonuniform sampling and recovery of multidimensional bandlimited functions by Gaussian radial-basis functions. J. Fourier Anal. Appl. 17(3), 519–533 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. R.P. Boas, Entire Functions (Academic, New York, 1954)

    MATH  Google Scholar 

  11. M.D. Buhmann, Radial Basis Functions: Theory and Implementations. Cambridge Monographs on Applied and Computational Mathematics, vol. 12 (Cambridge University Press, Cambridge, 2003), x+259 pp.

    Google Scholar 

  12. P.L. Butzer, G. Hinsen, Reconstruction of bounded signals from pseudo-periodic, irregularly spaced samples. Signal Process. 17(1), 1–17 (1989)

    Article  MathSciNet  Google Scholar 

  13. P.L. Butzer, R.L. Stens, A modification of the Whittaker-Kotel’nikov-Shannon sampling series. Aequation’es Mathematicae 28, 305–311 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. P.L. Butzer, S. Ries, R.L. Stens, Shannon’s sampling theorem, Cauchy’s integral formula, and related results, in Anniversary Volume on Approximation Theory and Functional Analysis (Oberwolfach, 1983). ISNM 65 (Birkhäuser, Basel, 1984), pp. 363–377

    Google Scholar 

  15. P.L. Butzer, J.R. Higgins, R.L. Stens, Sampling theory of signal analysis, in Development of Mathematics 1950–2000 (Birkhäuser, Basel, 2000), pp. 193–234

    Google Scholar 

  16. P.L. Butzer, J.R. Higgins, R.L. Stens, Classical and approximate sampling theorems: studies in the \(L^{P}(\mathbb{R})\) and the uniform norm. J. Approx. Theory 137(2), 250–263 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. P.L. Butzer, P.J.S.G. Ferreira, J.R. Higgins, S. Saitoh, G. Schmeisser, R.L. Stens, Interpolation and sampling: E. T. Whittaker, K. Ogura and their followers. J. Fourier Anal. Appl. 17(2), 320–354 (2011)

    Google Scholar 

  18. C.K. Chui, J. Wang, High-order orthonormal scaling functions and wavelets give poor time-frequency localization. J. Fourier Anal. Appl. 2(5), 415–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. I. Daubechies, Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61 (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992), xx+357 pp.

    Google Scholar 

  20. C. de Boor, A Practical Guide to Splines. Applied Mathematical Sciences, vol. 27 (Springer, New York/Berlin, 1978), xxiv+392 pp.

    Google Scholar 

  21. C. de Boor, K. Höllig, S. Riemenschneider, Convergence of cardinal series. Proc. Am. Math. Soc. 98(3), 457–460 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. W.F. Donoghue, Distributions and Fourier Transforms (Academic, New York, 1969)

    MATH  Google Scholar 

  23. R. Estrada, Summability of cardinal series and of localized Fourier series. Appl. Anal. 59(1–4), 271–288 (1995)

    MathSciNet  MATH  Google Scholar 

  24. H. Feichtinger, I. Pesenson, A reconstruction method for band-limited signals on the hyperbolic plane. Sampl. Theory Signal Image Process. 4(2), 107–119 (2005)

    MathSciNet  MATH  Google Scholar 

  25. F. Filbir, D. Potts, Scattered data approximation on the bisphere and application to texture analysis. Math. Geosci. 42(7), 747–771 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. K.M. Flornes, Yu. Lyubarskii, K. Seip, A direct interpolation method for irregular sampling. Appl. Comput. Harmon. Anal. 7(3), 305–314 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Franke, Scattered data interpolation: tests of some methods. Math. Comp. 38(157), 181–200, 747–771 (1982)

    Google Scholar 

  28. R.L. Hardy, Theory and applications of the multiquadric-biharmonic method. 20 years of discovery 1968–1988. Comput. Math. Appl. 19(8–9), 163–208 (1990)

    Google Scholar 

  29. J.R. Higgins, Five short stories about the cardinal series. Bull. Am. Math. Soc. (N.S.) 12(1), 45–89 (1985)

    Google Scholar 

  30. J.R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations (Oxford Science Publications/Clarendon Press, Oxford, 1996)

    MATH  Google Scholar 

  31. L. Hörmander, Linear Partial Differential Operators, 3rd Revised Printing (Springer, New York, 1969)

    Book  MATH  Google Scholar 

  32. A.J. Jerri, The Shannon sampling theorem – its various extensions and applications: a tutorial review. Proc. IEEE 65(11), 1565–1596 (1977)

    Article  MATH  Google Scholar 

  33. A. Kivinukk, G. Tamberg, On sampling series based on some combinations of sinc functions. Proc. Estonian Acad. Sci. Phys. Math. 51(4), 203–220 (2002)

    MathSciNet  MATH  Google Scholar 

  34. A. Kivinukk, G. Tamberg, On sampling operators defined by the Hann window and some of their extensions. Sampl. Theory Signal Image Process. 2(3), 235–257 (2003)

    MathSciNet  MATH  Google Scholar 

  35. A. Kivinukk, G. Tamberg, On Blackman-Harris windows for Shannon sampling series. Sampl. Theory Signal Image Process. 6(1), 87–108 (2007)

    MathSciNet  MATH  Google Scholar 

  36. A. Kivinukk, G. Tamberg, Interpolating generalized Shannon sampling operators, their norms and approximation properties. Sampl. Theory Signal Image Process. 8(1), 77–95 (2009)

    MathSciNet  MATH  Google Scholar 

  37. J. Ledford, Recovery of Paley-Wiener functions using scattered translates of regular interpolators. J. Approx. Theory 173, 1–13 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Ledford, On the convergence of regular families of cardinal interpolators. Adv. Comput. Math. 41(2), 357–371 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. B.Ya. Levin, Lectures on Entire Functions. In Collaboration with and with a Preface by Yu. Lyubarskii, M. Sodin, V. Tkachenko. Translated from the Russian manuscript by Tkachenko. Translations of Mathematical Monographs, vol. 150 (American Mathematical Society, Providence, RI, 1996)

    Google Scholar 

  40. Yu. Lyubarskii, W.R. Madych, The recovery of irregularly sampled band limited functions via tempered splines. J. Funct. Anal. 125(1), 201–222 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yu. Lyubarskii, W.R. Madych, Interpolation of functions from generalized Paley-Wiener spaces. J. Approx. Theory 133(2), 251–268 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. W.R. Madych, Polyharmonic splines, multiscale analysis and entire functions, in Multivariate Approximation and Interpolation (Duisburg, 1989). International Series of Numerical Mathematics, vol. 94 (Birkhäuser, Basel, 1990), pp. 205–216

    Google Scholar 

  43. W.R. Madych, Summability of Lagrange type interpolation series. J. Anal. Math. 84, 207–229 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. W.R. Madych, Convergence of classical cardinal series, in Multiscale Signal Analysis and Modeling, ed. by X. Shen, A.I. Zayed. Lecture Notes in Electrical Engineering (Springer, New York, 2012), pp. 3–24

    Google Scholar 

  45. W.R. Madych, Spline summability of the cardinal sine series and the Bernstein class, preprint

    Google Scholar 

  46. W.R. Madych, S.A. Nelson, Polyharmonic cardinal splines. J. Approx. Theory 60(2), 141–156 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. I. Pesenson, A reconstruction formula for band limited functions in L 2(R d). Proc. Am. Math. Soc. 127(12), 3593–3600 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. I. Pesenson, Poincaré-type inequalities and reconstruction of Paley-Wiener functions on manifolds. J. Geom. Anal. 14(1), 101–121 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. I. Pesenson, Analysis of band-limited functions on quantum graphs. Appl. Comput. Harmon. Anal. 21(2), 230–244 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. I. Pesenson, Plancherel-Polya-type inequalities for entire functions of exponential type in L p(R d). J. Math. Anal. Appl. 330(2), 1194–1206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. I. Pesenson, Sampling, splines and frames on compact manifolds. GEM Int. J. Geomath. 6(1), 43–81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. L. Qian, On the regularized Whittaker-Kotel’nikov-Shannon sampling formula. Proc. Am. Math. Soc. 131(4), 1169–1176 (2003)

    Article  MATH  Google Scholar 

  53. L. Qian, H. Ogawa, Modified sinc kernels for the localized sampling series. Sampl. Theory Signal Image Process. 4(2), 121–139 (2005)

    MathSciNet  MATH  Google Scholar 

  54. S.D. Riemenschneider, Convergence of interpolating splines: power growth. Isr. J. Math. 23(3–4), 339–346 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  55. S.D. Riemenschneider, N. Sivakumar, Gaussian radial-basis functions: cardinal interpolation of l p and power-growth data. Radial basis functions and their applications. Adv. Comput. Math. 11(2–3), 229–251 (1999)

    MathSciNet  MATH  Google Scholar 

  56. S.D. Riemenschneider, N. Sivakumar, On cardinal interpolation by Gaussian radial-basis functions: properties of fundamental functions and estimates for Lebesgue constants. J. Anal. Math. 79, 33–61 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  57. S.D. Riemenschneider, N. Sivakumar, Cardinal interpolation by Gaussian functions: a survey. J. Anal. 8, 157–178 (2000)

    MathSciNet  MATH  Google Scholar 

  58. S.D. Riemenschneider, N. Sivakumar, On the cardinal-interpolation operator associated with the one-dimensional multiquadric. East J. Approx. 7(4), 485–514 (2001)

    MathSciNet  MATH  Google Scholar 

  59. T. Schlumprecht, N. Sivakumar, On the sampling and recovery of bandlimited functions via scattered translates of the Gaussian. J. Approx. Theory 159(1), 128–153 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  60. G. Schmeisser, F. Stenger, Sinc approximation with a Gaussian multiplier. Sampl. Theory Signal Image Process. 6(2), 199–221 (2007)

    MathSciNet  MATH  Google Scholar 

  61. I.J. Schoenberg, Cardinal Spline Interpolation. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, vol. 12 (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1973), vi+125 pp.

    Google Scholar 

  62. I.J. Schoenberg, Notes on spline functions. III. On the convergence of the interpolating cardinal splines as their degree tends to infinity. Isr. J. Math. 16, 87–93 (1973)

    MATH  Google Scholar 

  63. I.J. Schoenberg, Cardinal interpolation and spline functions. VII. The behavior of cardinal spline interpolants as their degree tends to infinity. J. Anal. Math. 27, 205–229 (1974)

    MATH  Google Scholar 

  64. I.J. Schoenberg, On the remainders and the convergence of cardinal spline interpolation for almost periodic functions, in Studies in Spline Functions and Approximation Theory (Academic, New York, 1976), pp. 277–303

    Google Scholar 

  65. L. Schumaker, Spline Functions: Basic Theory, 3rd edn. Mathematical Library (Cambridge University Press, Cambridge, 2007), xvi+582 pp.

    Google Scholar 

  66. G. Tamberg, On some truncated Shannon sampling series. Sampl. Theory Signal Image Process. 12(1), 21–32 (2013)

    MathSciNet  MATH  Google Scholar 

  67. G.G. Walter, Abel summability for a distribution sampling theorem, in Generalized Functions, Convergence Structures, and Their Applications (Dubrovnik, 1987) (Plenum, New York, 1988), pp. 349–357

    Book  Google Scholar 

  68. G.G. Walter, Sampling bandlimited functions of polynomial growth. SIAM J. Math. Anal. 19(5), 1198–1203 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  69. G.G. Walter, X. Shen, Wavelets and Other Orthogonal Systems, 2nd edn. Studies in Advanced Mathematics (Chapman and Hall/CRC, Boca Raton, FL, 2001)

    Google Scholar 

  70. H. Wendland, Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 17 (Cambridge University Press, Cambridge, 2005), x+336 pp.

    Google Scholar 

  71. E.T. Whittaker, On the functions which are represented by the expansions of the interpolation theory. Proc. R. Soc. Edinb. 35, 181–194 (1915)

    Article  MATH  Google Scholar 

  72. J.M. Whittaker, On the cardinal function of interpolation theory. Proc. Edinb. Math. Soc. 1, 41–46 (1929)

    Article  MATH  Google Scholar 

  73. J.M. Whittaker, Interpolatory Function Theory. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 33 (Cambridge University Press, Cambridge, 1935)

    Google Scholar 

  74. A.I. Zayed, Advances in Shannon’s Sampling Theory (CRC Press, Boca Raton, FL, 1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. R. Madych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Madych, W.R. (2017). Convergence and Regularization of Sampling Series. In: Pesenson, I., Le Gia, Q., Mayeli, A., Mhaskar, H., Zhou, DX. (eds) Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-55556-0_5

Download citation

Publish with us

Policies and ethics