Skip to main content

Numerical Solution to an Energy Concentration Problem Associated with the Special Affine Fourier Transformation

  • Chapter
  • First Online:
Frames and Other Bases in Abstract and Function Spaces

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 848 Accesses

Abstract

The goal of this chapter is to solve a concentration of energy problem associated with the Special Affine Fourier Transformation (SAFT). Since an explicit, closed form solution seems to be elusive, we will solve the problem numerically. The problem can be reduced to finding the largest eigenvalues and their associated eigenfunctions of two-dimensional integral equations. The numerical solutions are obtained by using the Gaussian quadrature method in two dimensions. We use also the Gaussian quadrature method in two dimensions to solve concentration of energy problems in other cases, including a problem for kernels of convolution type, and to compute the so-called generalized prolate spheroidal wave functions (GPSWF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With a little abuse of notation, we use \(\underline{\lambda }^{-1}\) which should be understood as a parameter vector corresponding to the inverse–SAFT.

References

  1. S. Abe, J. Sheridan, Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation. Opt. Lett. 19 (22), 1801–1803 (1994)

    Article  Google Scholar 

  2. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publication, New York, 1972)

    MATH  Google Scholar 

  3. G.E. Andrews, R. Askey, R. Roy, Special Function (Cambridge University Press, Cambridge, New York, 1999)

    Book  MATH  Google Scholar 

  4. A. Karoui, T. Moumni, New efficient methods of computing the prolate spheroidal wave functions and their corresponding eigenvalues. Appl. Comput. Harmon. Anal. 24, 269–289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Karoui, T. Moumni, Spectral analysis of the finite Hankel transform operator and circular prolate spheroidal wave functions. J. Comput. Appl. Math. 233, 315–333 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Karoui, I. Mehrzi, T. Moumni, Eigenfunctions of the Airy’s integral transform: properties, numerical computations and asymptotic behaviors. J. Math. Anal. Appl. 389, 989–1005 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. H.J. Landau, H.O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty-II. Bell Syst. Tech. J. 40, 65–84 (1961)

    Article  MATH  Google Scholar 

  8. H.J. Landau, H.O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty-III; the dimension of the space of essentially tine and band-limited signals. Bell Syst. Tech. J. 41, 1295–1336 (1962)

    Article  MATH  Google Scholar 

  9. T. Moumni, A.I. Zayed, A generalization of the prolate spheroidal wave functions with applications to sampling. Integr. Transf. Spec. Funct. 25 (6), 433–447 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Slepian, Prolate spheroidal wave functions, Fourier analysis and uncertainty–IV: extensions to many dimensions; generalized prolate spheroidal functions. Bell Syst. Tech. J. 43, 3009–3057 (1964)

    Article  MATH  Google Scholar 

  11. D. Slepian, H.O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty-I. Bell Syst. Tech. J. 40, 43–64 (1961)

    Article  MATH  Google Scholar 

  12. B. Szabo, I. Babuska, Finite Element Analysis (Wiley, New York, 1991)

    MATH  Google Scholar 

  13. A. Zayed, Solution of the energy concentration problem in reproducing-Kernel Hilbert space. J. Soc. Ind. Appl. Math. 75 (1), 21–37 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Zayed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ammari, A., Moumni, T., Zayed, A. (2017). Numerical Solution to an Energy Concentration Problem Associated with the Special Affine Fourier Transformation. In: Pesenson, I., Le Gia, Q., Mayeli, A., Mhaskar, H., Zhou, DX. (eds) Frames and Other Bases in Abstract and Function Spaces. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-55550-8_8

Download citation

Publish with us

Policies and ethics