Skip to main content

Frame Properties of Shifts of Prolate and Bandpass Prolate Functions

  • Chapter
  • First Online:
Frames and Other Bases in Abstract and Function Spaces

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 857 Accesses

Abstract

Frame properties of shifts of certain prolate spheroidal wave functions and corresponding bandpass prolates are reviewed and analogues between continuous and finite dimensional theories are pointed out. An application to the study of phase locking in electroencephalography channel signals is also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.P. Boyd, Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms. J. Comput. Phys. 199, 688–716 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. R.T. Canolty, R.T. Knight, The functional role of cross-frequency coupling. Trends Cogn. Sci. 14 (11), 506–515 (2010)

    Article  Google Scholar 

  3. R.T. Canolty, E. Edwards, S.S. Dalal, M. Soltani, S.S. Nagarajan, H.E. Kirsch, M.S. Berger, N.M. Barbaro, R.T. Knight, High gamma power is phase-locked to theta oscillations in human neocortex. Science 313 (5793), 1626–1628 (2006)

    Article  Google Scholar 

  4. P.G. Casazza, G. Kutyniok, F. Philipp, Introduction to finite frame theory. Finite Frames: Theory and Applications (Birkhäuser Boston, Boston, 2013), pp. 1–53

    Google Scholar 

  5. C. Heil, What is … a frame? Not. Am. Math. Soc. 60 (6), 748–750 (2013)

    MathSciNet  MATH  Google Scholar 

  6. J.A. Hogan, J.D. Lakey, Duration and Bandwidth Limiting. Prolate Functions, Sampling, and Applications (Birkhäuser, Boston, 2012)

    Google Scholar 

  7. J.A. Hogan, J.D. Lakey, Frame properties of shifts of prolate spheroidal wave functions. Appl. Comput. Harmon. Anal. 39 (1), 21–32 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. J.A. Hogan, J.D. Lakey, Prolate shift frames and their duals, in 2015 International Conference on Sampling Theory and Applications (SampTA), May 2015, pp. 115–119

    Google Scholar 

  9. J.A. Hogan, J.D. Lakey, Wavelet frames generated by bandpass prolate functions, in 2015 International Conference on Sampling Theory and Applications (SampTA), May 2015, pp. 120–123

    Google Scholar 

  10. J.A. Hogan, J.D. Lakey, On the numerical evaluation of bandpass prolates II. J. Fourier Anal. Appl. 23, 125–140 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.A. Hogan, J. Kroger, J. Lakey, Time and bandpass limiting and an application to EEG. Sampl. Theory Signal Image Process. 13, 296–313 (2014)

    MathSciNet  MATH  Google Scholar 

  12. A. Karoui, T. Moumni, New efficient methods of computing the prolate spheroidal wave functions and their corresponding eigenvalues. Appl. Comput. Harmon. Anal. 24, 269–289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. J.-P. Lachaux, E. Rodriguez, J. Martinerie, F.J. Varela, Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999)

    Article  Google Scholar 

  14. J.-P. Lachaux, E. Rodriguez, M. Le Van Quyen, A. Lutz, J. Martinerie, F.J. Varela, Studying single-trials of phase synchronous activity in the brain. Int. J. Bifurcation Chaos 10 (10), 2429–2439 (2000)

    Article  Google Scholar 

  15. H.J. Landau, On the density of phase-space expansions. IEEE Trans. Inf. Theory 39, 1152–1156 (1993)

    Article  MATH  Google Scholar 

  16. H.J. Landau, H.O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. II. Bell Syst. Tech. J. 40, 65–84 (1961)

    Article  MATH  Google Scholar 

  17. H.J. Landau, H.O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals. Bell Syst. Tech. J. 41, 1295–1336 (1962)

    MATH  Google Scholar 

  18. H.J. Landau, H. Widom, Eigenvalue distribution of time and frequency limiting. J. Math. Anal. Appl. 77, 469–481 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. J.A. Morrison, On the eigenfunctions corresponding to the bandpass kernel, in the case of degeneracy. Q. Appl. Math. 21, 13–19 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Niven, On the conduction of heat in ellipsoids of revolution. Philos. Trans. R. Soc. A 171, 117–151 (1880)

    Article  MATH  Google Scholar 

  21. D. Slepian, Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell Syst. Tech. J. 43, 3009–3057 (1964)

    Google Scholar 

  22. D. Slepian, Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V - the discrete case. Bell Syst. Tech. J. 57, 1371–1430 (1978)

    Article  MATH  Google Scholar 

  23. D. Slepian, H.O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell Syst. Tech. J. 40, 43–63 (1961)

    Article  MATH  Google Scholar 

  24. J.A. Stratton, P.M. Morse, L.J. Chu, J.D.C. Little, F.J. CorbatĂł, Spheroidal Wave Functions, Including Tables of Separation Constants and Coefficients (Wiley, New York, 1956)

    MATH  Google Scholar 

  25. E. Tognoli, J.A.S. Kelso, Brain coordination dynamics: True and false faces of phase synchrony and metastability. Prog. Neurobiol. 87 (1), 31–40 (2009)

    Article  Google Scholar 

  26. F. Varela, J.P. Lachaux, E. Rodriguez, J. Martinerie, The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001)

    Article  Google Scholar 

  27. B. Voytek, M. D’Esposito, N. Crone, R.T. Knight, A method for event-related phase/amplitude coupling. NeuroImage 64, 416–424 (2013)

    Article  Google Scholar 

  28. G.G. Walter, X. Shen, Wavelets based on prolate spheroidal wave functions. J. Fourier Anal. Appl. 10 (1), 1–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Xiao, V. Rokhlin, N. Yarvin, Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Prob. 17, 805–838 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. W.Y. Xu, C. Chamzas, On the periodic discrete prolate spheroidal sequences. SIAM J. Appl. Math. 44, 1210–1217 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank both anonymous referees for several helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Hogan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hogan, J.A., Lakey, J.D. (2017). Frame Properties of Shifts of Prolate and Bandpass Prolate Functions. In: Pesenson, I., Le Gia, Q., Mayeli, A., Mhaskar, H., Zhou, DX. (eds) Frames and Other Bases in Abstract and Function Spaces. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-55550-8_10

Download citation

Publish with us

Policies and ethics