Skip to main content

The Piezoresistive Effect in p-Type Nanocrystalline SiC

  • Chapter
  • First Online:
  • 473 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Different from single crystalline SiC, nanocrystalline SiC (nc-SiC), with its grain size in sub-micron scale, can be grown on various substrates (e.g. silicon, silicon dioxide, silicon nitride) and therefore, it is a good candidate for MEMS transducers (Komura, Jpn J Appl Phys, 46(1):45–50, 2007, [1]; Somogyi, Nanoscale, 4:7720–7726, 2012, [3]; Eickhoff, J Appl Phys, 96:2872–2879, 2004, [2]).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Y. Komura, A. Tabata, T. Narita, M. Kanaya, A. Kondo, T. Mizutani, Film properties of nanocrystalline 3C-SiC thin films deposited on glass substrates by hot-wire chemical vapor deposition using CH\(_4\) as a carbon source. Jpn. J. Appl. Phys. 46(1), 45–50 (2007)

    Article  Google Scholar 

  2. B. Somogyi, V. Zolyomi, A. Gali, Near-infrared luminescent cubic silicon carbide nanocrystals for in vivo biomarker applications: an ab initio study. Nanoscale 4, 7720–7726 (2012)

    Article  Google Scholar 

  3. M. Eickhoff, M. Moller, G. Kroetz, M. Stutzmann, Piezoresistive properties of single crystalline, polycrystalline, and nanocrystalline n-type 3C-SiC. J. Appl. Phys. 96, 2872–2879 (2004)

    Article  Google Scholar 

  4. N. Naderi, M.R. Hashim, Nanocrystalline SiC sputtered on porous silicon substrate after annealing. Mater. Lett. 97, 90–92 (2013)

    Article  Google Scholar 

  5. L. Wang, S. Dimitrijev, P. Tanner, J. Zou, Aluminum induced in situ crystallization of amorphous SiC. Appl. Phys. Lett. 94, 181909 (2009)

    Article  Google Scholar 

  6. H.-P. Phan, D.V. Dao, L. Wang, T. Dinh, N.-T. Nguyen, A. Qamar, P. Tanner, S. Dimitrijev, Y. Zhu, The effect of strain on the electrical conductance of p-type nanocrystalline silicon carbide thin films. J. Mater. Chem. C 3, 1172–1176 (2015)

    Google Scholar 

  7. R. Verucchi, L. Aversa, M.V. Nardi, S. Taioli, S. Beccara, D. Alfe, L. Nasi, F. Rossi, G. Salviati, S. Iannotta, Epitaxy of nanocrystalline silicon carbide on Si (111) at room temperature. J. Am. Chem. Soc. 2012(134), 17400–17403 (2012)

    Article  Google Scholar 

  8. H. Tateyama, H. Noma, Y. Adachi, M. Komatsu, Prediction of stacking faults in \(\beta \)-silicon carbide: X-ray and NMR studies. Chem. Mater. 9(3), 766–772 (1997)

    Article  Google Scholar 

  9. H.P. Phan, D.V. Dao, P. Tanner, N.T. Nguyen, L. Wang, Y. Zhu, S. Dimitrijev, Fundamental piezoresistive coefficients of p-type single crystalline 3C-SiC. Appl. Phys. Lett. 104, 111905 (2014)

    Article  Google Scholar 

  10. H.P. Phan, D.V. Dao, P. Tanner, N.T. Nguyen, J.S. Han, S. Dimitrijev, G. Walker, L. Wang, Y. Zhu, Thickness dependence of the piezoresistive effect in p-type single crystalline 3C-SiC nanothin films. J. Matter. Chem. C 2, 7176–7179 (2014)

    Article  Google Scholar 

  11. H.P. Phan, P. Tanner, D.V. Dao, N.T. Nguyen, L. Wang, Y. Zhu, S. Dimitrijev, Piezoresistive effect of p-type single crystalline 3C-SiC thin film. IEEE Electron Device Lett. 35(3), 399–401 (2014)

    Article  Google Scholar 

  12. A. Qamar, P. Tanner, D.V. Dao, H.P. Phan, T. Dinh, Electrical properties of p-type 3C-SiC/Si heterojunction diode under mechanical stress. IEEE Electron Device Lett. 35(12), 1293–1295 (2014)

    Article  Google Scholar 

  13. M.-D. Nguyen, H.-P. Phan, K. Matsumoto, I. Shimoyama, A sensitive liquid-cantilever diaphragm for pressure sensor, in Proceedings of 26th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2013) (2013)

    Google Scholar 

  14. D.V. Dao, T. Toriyama, J. Wells, S. Sugiyama, Six-degree of freedom micro force-moment sensor for application in geophysics, in Proceedings of 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2002), Las Vegas, USA (2002), pp. 20–24

    Google Scholar 

  15. A.A. Barlian, W.T. Park, J.R. Mallon Jr., A.J. Rastegar, B.L. Pruitt, Review: semiconductor piezoresistance for microsystems. Proc. IEEE 97(3), 513 (2009)

    Article  Google Scholar 

  16. J. Engel, J. Chen, C. Liu, Development of polyimide flexible tactile sensor skin. J. Micromech. Microeng. 13, 359–366 (2003)

    Article  Google Scholar 

  17. W.K. Schomburg, Z. Rummler, P. Shao, K. Wulff, L. Xie, The design of metal strain gauges on diaphragms. J. Micromech. Microeng. 14, 1101–1108 (2004)

    Article  Google Scholar 

  18. I.H. Kazi, P.M. Wild, T.N. Moore, M. Sayer, Characterization of sputtered nichrome (Ni-Cr 80/20 wt.%) films for strain gauge applications. Thin Solid Films 515(4), 2602–2606 (2006)

    Article  Google Scholar 

  19. D. Macnamara, D. Thiel, D. James, P. Lisner, in Proceedings of SPIE 6035, Microelectronics: Design, Technology, and Packaging II, ed. by A.J. Hariz (SPIE, 2006), pp. 603524

    Google Scholar 

  20. V. Mosser, J. Suski, J. Goss, E. Obermeier, Piezoresistive pressure sensors based on polycrystalline silicon. Sens. Actuators A Phys. 28(2), 113–132 (1991)

    Article  Google Scholar 

  21. P. Alpuim, M. Andrade, V. Sencadas, M. Ribeiro, S.A. Filonovich, S. Lanceros-Mendez, Piezoresistive properties of nanocrystalline silicon thin films deposited on plastic substrates by hot-wire chemical vapor deposition. Thin Solid Films 515, 7685–7661 (2007)

    Article  Google Scholar 

  22. S.D. Janssens, S. Drijkoningen, K. Haenen, Large piezoresistive effect in surface conductive nanocrystalline diamond. Appl. Phys. Lett. 105, 101601 (2014)

    Article  Google Scholar 

  23. K. Nakamura, D.V. Dao, Y. Isono, T. Toriyama, S. Sugiyama, Nanowires, Electronic States and Piezoresistivity in Silicon Nanowires (In-Tech, Vienna, 2010)

    Chapter  Google Scholar 

  24. X. Liu, C. Shi, R. Chuai, Polycrystalline silicon piezoresistive nano thin film technology, Solid State Circuits Technologies (2010). ISBN: 978-953-307-045-2

    Google Scholar 

  25. C. Chuai, B. Liu, X. Liu, X. Sun, X. Shi, L. Wang, Design, fabrication and characterization of a high-sensitivity pressure sensor based on nano-polysilicon thin film transistors. J. Semicond. 31(3), 032002 (2010)

    Article  Google Scholar 

  26. L. Fang, W.L. Wang, P.D. Ding, K.J. Liao, J. Wang, Study on the piezoresistive effect of crystalline and polycrystalline diamond under uniaxial strains. J. Appl. Phys. 86(9), 5185–5193 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang-Phuong Phan .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Phan, HP. (2017). The Piezoresistive Effect in p-Type Nanocrystalline SiC. In: Piezoresistive Effect of p-Type Single Crystalline 3C-SiC. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-55544-7_5

Download citation

Publish with us

Policies and ethics