Skip to main content

Lipids in Regulation of the Mitochondrial Outer Membrane Permeability, Bioenergetics, and Metabolism

  • Chapter
  • First Online:
Molecular Basis for Mitochondrial Signaling

Abstract

The role of mitochondrial membranes in oxidative phosphorylation, energy production, calcium signaling, and mitochondrial metabolism is well established, especially with regard to lipid and steroid homeostasis, communication with other organelles, apoptosis, and human disease. Here we address the complementary role of the mitochondrial outer membrane (MOM) as a platform for cytosolic proteins to function as potent regulators of the MOM permeability through their direct functional interaction with the voltage-dependent anion channel (VDAC), the major MOM channel. Two abundant cytosolic proteins, dimeric tubulin and α-synuclein (α-syn), modulate fluxes of ATP/ADP and other water-soluble mitochondrial metabolites through VDAC. Their interaction with VDAC is a multistep process in which the first step is the lipid-sensitive binding to the MOM and the second is the voltage-dependent blockage of the VDAC pore. Both proteins induce characteristic rapid reversible blockages of VDAC reconstituted into planar lipid membranes with nanomolar efficiency and are thus able to effectively regulate ATP/ADP fluxes through VDAC in a lipid-dependent manner. A proposed general model of VDAC inhibition explains satisfactorily how two very different and otherwise unrelated proteins induce qualitatively similar blockages of reconstituted VDAC. In in vitro biophysical experiments, tubulin and α-syn display similar lipid-dependent membrane-binding properties, which make these proteins well suited for targeting the MOM and strongly enhance the availability of these molecules for the voltage-sensitive interaction with VDAC. As the physiological significance of the association of tubulin and α-syn with mitochondrial membranes in cells is only beginning to be appreciated, we propose a new role of mitochondrial lipids in the control of MOM permeability. Overall, the emerging data indicate that the physiological conditions in the cell, such as the expression level of α-syn, the ratio between dimeric and polymerized tubulin in the cytosol, cytosolic pH, MOM lipid composition, level of lipid peroxidation, and potential across the MOM, strongly determine the efficiency with which both cytosolic proteins regulate normal metabolite exchange through VDAC or cause mitochondrial dysfunction.

This chapter was created within the capacity of an US governmental employment. US copyright protection does not apply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andre N, Braguer D, Brasseur G, Goncalves A, Lemesle-Meunier D, Guise S, Jordan MA, Briand C (2000) Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells. Cancer Res 60(19):5349–5353

    Google Scholar 

  • Angelova PR, Horrocks MH, Klenerman D, Gandhi S, Abramov AY, Shchepinov MS (2015) Lipid peroxidation is essential for alpha-synuclein-induced cell death. J Neurochem 133(4):582–589

    Article  Google Scholar 

  • Arnal I, Wade RH (1995) How does taxol stabilize microtubules? Curr Biol 5(8):900–908

    Article  Google Scholar 

  • Aufschnaiter A, Kohler V, Diessl J, Peselj C, Carmona-Gutierrez D, Keller W, Buttner S (2016) Mitochondrial lipids in neurodegeneration. Cell Tissue Res 367(1):125–140

    Google Scholar 

  • Ballatore C, Brunden KR, Huryn DM, Trojanowski JQ, Lee VM, Smith AB 3rd (2012) Microtubule stabilizing agents as potential treatment for Alzheimer’s disease and related neurodegenerative tauopathies. J Med Chem 55(21):8979–8996

    Article  Google Scholar 

  • Banerjee K, Sinha M, Pham Cle L, Jana S, Chanda D, Cappai R, Chakrabarti S (2010) Alpha-synuclein induced membrane depolarization and loss of phosphorylation capacity of isolated rat brain mitochondria: implications in Parkinson’s disease. FEBS Lett 584(8):1571–1576

    Article  Google Scholar 

  • Basanez G, Sharpe JC, Galanis J, Brandt TB, Hardwick JM, Zimmerberg J (2002) Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem 277(51):49360–49365

    Article  Google Scholar 

  • Bender A, Desplats P, Spencer B, Rockenstein E, Adame A, Elstner M, Laub C, Mueller S, Koob AO, Mante M et al (2013) TOM40 mediates mitochondrial dysfunction induced by alpha-synuclein accumulation in Parkinson’s disease. PLoS ONE 8(4):e62277

    Article  ADS  Google Scholar 

  • Bernier-Valentin F, Aunis D, Rousset B (1983) Evidence for tubulin-binding sites on cellular membranes – plasma-membranes, mitochondrial-membranes, and secretory granule membranes. J Cell Biol 97(1):209–216

    Article  Google Scholar 

  • Bezrukov SM, Vodyanoy I (1993) Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states. Biophys J 64(1):16–25

    Article  Google Scholar 

  • Bhattacharyya B, Wolff J (1975) Membrane-bound tubulin in brain and thyroid tissue. J Biol Chem 250(19):7639–7646

    Google Scholar 

  • Bodner CR, Dobson CM, Bax A (2009) Multiple tight phospholipid-binding modes of α-synuclein revealed by solution NMR spectroscopy. J Mol Biol 390(4):775–790

    Article  Google Scholar 

  • Borza LR (2014) A review on the cause-effect relationship between oxidative stress and toxic proteins in the pathogenesis of neurodegenerative diseases. Rev Med Chir Soc Med Nat Iasi 118(1):19–27

    Google Scholar 

  • Braun AR, Lacy MM, Ducas VC, Rhoades E, Sachs JN (2014) Alpha-synuclein-induced membrane remodeling is driven by binding affinity, partition depth, and interleaflet order asymmetry. J Am Chem Soc 136(28):9962–9972

    Article  Google Scholar 

  • Brieger K, Schiavone S, Miller FJ Jr, Krause KH (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly 142:w13659

    Google Scholar 

  • Bueler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218(2):235–246

    Article  Google Scholar 

  • Caron JM, Berlin RD (1980) Reversible adsorption of microtubule protein to phospholipid-vesicles. J Cell Biol 87(2):A255–A255

    Google Scholar 

  • Carre M, Andre N, Carles G, Borghi H, Brichese L, Briand C, Braguer D (2002) Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J Biol Chem 277(37):33664–33669

    Article  Google Scholar 

  • Castellana ET, Cremer PS (2006) Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep 61(10):429–444

    Article  ADS  Google Scholar 

  • Chipuk JE, Bouchier-Hayes L, Green DR (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13(8):1396–1402

    Article  Google Scholar 

  • Cicchillitti L, Penci R, Di Michele M, Filippetti F, Rotilio D, Donati MB, Scambia G, Ferlini C (2008) Proteomic characterization of cytoskeletal and mitochondrial class III beta-tubulin. Mol Cancer Ther 7(7):2070–2079

    Article  Google Scholar 

  • Cole NB, Dieuliis D, Leo P, Mitchell DC, Nussbaum RL (2008) Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification. Exp Cell Res 314(10):2076–2089

    Article  Google Scholar 

  • Colombini M (1989) Voltage gating in the mitochondrial channel, VDAC. J Membr Biol 111(2):103–111

    Article  Google Scholar 

  • Colombini M (2004) VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256(1–2):107–115

    Article  Google Scholar 

  • Colombini M (2010) Ceramide channels and their role in mitochondria-mediated apoptosis. Biochim Biophys Acta 1797(6–7):1239–1244

    Article  Google Scholar 

  • Colombini M, Blachly-Dyson E, Forte M (1996) VDAC, a channel in the outer mitochondrial membrane. In: Narahashi T (ed) In ion channels. Plenum Press, New York, pp 169–202

    Chapter  Google Scholar 

  • Conklin KA (2004) Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3(4):294–300

    Article  Google Scholar 

  • Cornell RB (2015) Membrane lipid compositional sensing by the inducible amphipathic helix of CCT. Biochim Biophys Acta. doi:10.1016/j.bbalip.2015.1012.1022

    Google Scholar 

  • Crimi M, Esposti MD (2011) Apoptosis-induced changes in mitochondrial lipids. Biochim Biophys Acta 1813(4):551–557

    Article  Google Scholar 

  • Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273(16):9443–9449

    Article  Google Scholar 

  • de Kroon AI, Dolis D, Mayer A, Lill R, de Kruijff B (1997) Phospholipid composition of highly purified mitochondrial outer membranes of rat liver and Neurospora crassa. Is cardiolipin present in the mitochondrial outer membrane? Biochim Biophys Acta 1325(1):108–116

    Article  Google Scholar 

  • DeHart DN, Gooz M, Rostovtseva TK, Sheldon KL, Lemasters JJ, Maldonado EN (2014) Antagonists of the inhibitory effect of free tubulin on VDAC induce oxidative stress and mitochondrial dysfunction. Biophys J 106(2):591a–591a

    Article  Google Scholar 

  • Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283(14):9089–9100

    Article  Google Scholar 

  • Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Park Dis 3(4):461–491

    Google Scholar 

  • Elkon H, Don J, Melamed E, Ziv I, Shirvan A, Offen D (2002) Mutant and wild-type alpha-synuclein interact with mitochondrial cytochrome C oxidase. J Mol Neurosci 18(3):229–238

    Article  Google Scholar 

  • Ellis CE, Murphy EJ, Mitchell DC, Golovko MY, Scaglia F, Barcelo-Coblijn GC, Nussbaum RL (2005) Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking alpha-synuclein. Mol Cell Biol 25(22):10190–10201

    Article  Google Scholar 

  • Feit H, Barondes SH (1970) Colchicine-binding activity in particulate fractions of mouse brain. J Neurochem 17(9):1355–1364

    Article  Google Scholar 

  • Field JJ, Waight AB, Senter PD (2014) A previously undescribed tubulin binder. Proc Natl Acad Sci U S A 111(38):13684–13685

    Article  ADS  Google Scholar 

  • Flis VV, Daum G (2013) Lipid transport between the endoplasmic reticulum and mitochondria. Cold Spring Harb Perspect Biol 5(6):1–22

    Google Scholar 

  • Furt F, Moreau P (2009) Importance of lipid metabolism for intracellular and mitochondrial membrane fusion/fission processes. Int J Biochem Cell B 41(10):1828–1836

    Article  Google Scholar 

  • Fusco G, De Simone A, Gopinath T, Vostrikov V, Vendruscolo M, Dobson CM, Veglia G (2014) Direct observation of the three regions in alpha-synuclein that determine its membrane-bound behaviour. Nat Commun 5:3827

    Article  Google Scholar 

  • Ghio S, Kamp F, Cauchi R, Giese A, Vassallo N (2016) Interaction of alpha-synuclein with biomembranes in Parkinson’s disease – role of cardiolipin. Prog Lipid Res 61:73–82

    Article  Google Scholar 

  • Gonzalvez F, Pariselli F, Dupaigne P, Budihardjo I, Lutter M, Antonsson B, Diolez P, Manon S, Martinou JC, Goubern M et al (2005) tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates Bax and Bak. Cell Death Differ 12(6):614–626

    Article  Google Scholar 

  • Gonzalvez F, Schug ZT, Houtkooper RH, MacKenzie ED, Brooks DG, Wanders RJ, Petit PX, Vaz FM, Gottlieb E (2008) Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol 183(4):681–696

    Article  Google Scholar 

  • Greeshma N, Prasanth KG, Balaji B (2015) Tetrahydrocurcumin exerts protective effect on vincristine induced neuropathy: behavioral, biochemical, neurophysiological and histological evidence. Chem Biol Interact 238:118–128

    Article  Google Scholar 

  • Gurnev PA, Rostovtseva TK, Bezrukov SM (2011) Tubulin-blocked state of VDAC studied by polymer and ATP partitioning. FEBS Lett 585(14):2363–2366

    Article  Google Scholar 

  • Gurnev PA, Queralt-Martin M, Aguilella VM, Rostovtseva TK, Bezrukov SM (2012) Probing tubulin-blocked state of VDAC by varying membrane surface charge. Biophys J 102(9):2070–2076

    Article  Google Scholar 

  • Guzun R, Karu-Varikmaa M, Gonzalez-Granilo M, Kuznetsov A, Michel L, Cottet-Rousselle C, Saaremae M, Kaam T, Metsis M, Grimm M et al (2011) Mitochondria-cytoskeleton interaction: distribution of β-tubulins in cardiomyocytes and HL-1 cells. Biochim Biophys Acta 1807:458–469

    Article  Google Scholar 

  • Hargreaves AJ, McLean WG (1988) The characterization of phospholipids associated with microtubules, purified tubulin and microtubule associated proteins in vitro. Int J Biochem 20(10):1133–1138

    Article  Google Scholar 

  • Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sisk A, Sundsmo M, Masliah E (1999) Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 10(4):717–721

    Article  Google Scholar 

  • He L, Robertson JW, Li J, Karcher I, Schiller SM, Knoll W, Naumann R (2005) Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides. Langmuir 21(25):11666–11672

    Article  Google Scholar 

  • Heinrich F, Losche M (2014) Zooming in on disordered systems: neutron reflection studies of proteins associated with fluid membranes. Biochim Biophys Acta 1838(9):2341–2349

    Article  Google Scholar 

  • Hodge T, Colombini M (1997) Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol 157(3):271–279

    Article  Google Scholar 

  • Hoogerheide DP, Gurnev PA, Rostovtseva TK, Bezrukov SM (2016) Mechanism of alpha-synuclein translocation through a VDAC nanopore revealed by energy landscape modeling of escape time distributions. Nanoscale 9(1):183–192

    Google Scholar 

  • Huang C, Freter C (2015) Lipid metabolism, apoptosis and cancer therapy. Int J Mol Sci 16(1):924–949

    Article  Google Scholar 

  • Jacobs D, Hoogerheide DP, Rovini A, Gurnev PA, Bezrukov SM, Rostovtseva TK (2016) Membrane lipid composition regulates alpha-synuclein blockage of and translocation through the mitochondrial voltage-dependent anion channel. Biophys J 110(3):19a–20a

    Article  Google Scholar 

  • Jiang Z, de Messieres M, Lee JC (2013) Membrane remodeling by alpha-synuclein and effects on amyloid formation. J Am Chem Soc 135(43):15970–15973

    Article  Google Scholar 

  • Jiang Z, Hess SK, Heinrich F, Lee JC (2015) Molecular details of alpha-synuclein membrane association revealed by neutrons and photons. J Phys Chem B 119(14):4812–4823

    Article  Google Scholar 

  • Jo E, McLaurin J, Yip CM, St George-Hyslop P, Fraser PE (2000) Alpha-synuclein membrane interactions and lipid specificity. J Biol Chem 275(44):34328–34334

    Article  Google Scholar 

  • Joe PA, Banerjee A, Luduena RF (2008) The roles of cys 124 and ser239 in the functional properties of human betaIII tubulin. Cell Motil Cytoskeleton 65(6):476–486

    Article  Google Scholar 

  • Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang JF, Potapovich AI, Kini V, Amoscato AA, Fujii Y (2004) Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome C with cardiolipin and phosphatidylserine. Free Radic Biol Med 37(12):1963–1985

    Article  Google Scholar 

  • Kagan VE, Chu CT, Tyurina YY, Cheikhi A, Bayir H (2014) Cardiolipin asymmetry, oxidation and signaling. Chem Phys Lipids 179:64–69

    Article  Google Scholar 

  • Kappler L, Li J, Haring HU, Weigert C, Lehmann R, Xu G, Hoene M (2016) Purity matters: a workflow for the valid high-resolution lipid profiling of mitochondria from cell culture samples. Sci Rep 6:21107

    Article  ADS  Google Scholar 

  • Kokubo J, Nagatani N, Hiroki K, Kuroiwa K, Watanabe N, Arai T (2008) Mechanism of destruction of microtubule structures by 4-hydroxy-2-nonenal. Cell Struct Funct 33(1):51–59

    Article  Google Scholar 

  • Kruger R, Muller T, Riess O (2000) Involvement of alpha-synuclein in Parkinson’s disease and other neurodegenerative disorders. J Neural Transm (Vienna) 107(1):31–40

    Article  Google Scholar 

  • Kumar N, Klausner RD, Weinstein JN, Blumenthal R, Flavin M (1981) Interaction of tubulin with phospholipid-vesicles. 2. Physical changes of the protein. J Biol Chem 256(11):5886–5889

    Google Scholar 

  • Kuszak AJ, Jacobs D, Gurnev PA, Shiota T, Louis JM, Lithgow T, Bezrukov SM, Rostovtseva TK, Buchanan SK (2015) Evidence of distinct channel conformations and substrate binding affinities for the mitochondrial outer membrane protein translocase pore Tom40. J Biol Chem 290(43):26204–26217

    Article  Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111(3):331–342

    Article  Google Scholar 

  • Landeta O, Landajuela A, Gil D, Taneva S, Di Primo C, Sot B, Valle M, Frolov VA, Basanez G (2011) Reconstitution of proapoptotic BAK function in liposomes reveals a dual role for mitochondrial lipids in the BAK-driven membrane permeabilization process. J Biol Chem 286(10):8213–8230

    Article  Google Scholar 

  • Lang H, Duschl C, Vogel H (1994) A new class of thiolipids for the attachment of lipid bilayers on gold surfaces. Langmuir 10(1):197–210

    Article  Google Scholar 

  • Le Grand M, Rovini A, Bourgarel-Rey V, Honore S, Bastonero S, Braguer D, Carre M (2014) ROS-mediated EB1 phosphorylation through Akt/GSK3beta pathway: implication in cancer cell response to microtubule-targeting agents. Oncotarget 5(10):3408–3423

    Article  Google Scholar 

  • Lemasters JJ, Holmuhamedov E (2006) Voltage-dependent anion channel (VDAC) as mitochondrial governator – thinking outside the box. Biochim Biophys Acta 1762(2):181–190

    Article  Google Scholar 

  • Lemasters JJ, Holmuhamedov EL, Czerny C, Zhong Z, Maldonado EN (2012) Regulation of mitochondrial function by voltage dependent anion channels in ethanol metabolism and the Warburg effect. Biochim Biophys Acta 1818(6):1536–1544

    Article  Google Scholar 

  • Lemeshko VV (2006) Theoretical evaluation of a possible nature of the outer membrane potential of mitochondria. Eur Biophys J 36(1):57–66

    Article  Google Scholar 

  • Lemeshko VV (2014a) VDAC electronics: 1. VDAC-hexo(gluco)kinase generator of the mitochondrial outer membrane potential. Biochim Biophys Acta 1838(5):1362–1371

    Article  Google Scholar 

  • Lemeshko VV (2014b) VDAC electronics: 2. A new, anaerobic mechanism of generation of the membrane potentials in mitochondria. Biochim Biophys Acta 1838(7):1801–1808

    Article  Google Scholar 

  • Lemeshko VV (2016) VDAC electronics: 3. VDAC-creatine kinase-dependent generation of the outer membrane potential in respiring mitochondria. BBA Biomembr 1858(7):1411–1418

    Article  Google Scholar 

  • Li WW, Yang R, Guo JC, Ren HM, Zha XL, Cheng JS, Cai DF (2007) Localization of alpha-synuclein to mitochondria within midbrain of mice. Neuroreport 18(15):1543–1546

    Article  Google Scholar 

  • Liu G, Zhang C, Yin J, Li X, Cheng F, Li Y, Yang H, Ueda K, Chan P, Yu S (2009) Alpha-synuclein is differentially expressed in mitochondria from different rat brain regions and dose-dependently down-regulates complex I activity. Neurosci Lett 454(3):187–192

    Article  Google Scholar 

  • Lokappa SB, Ulmer TS (2011) α-synuclein populates both elongated and broken helix states on small unilamellar vesicles. J Biol Chem 286(24):21450–21457

    Article  Google Scholar 

  • Luth ES, Stavrovskaya IG, Bartels T, Kristal BS, Selkoe DJ (2014) Soluble, prefibrillar alpha-synuclein oligomers promote complex I-dependent, Ca2+-induced mitochondrial dysfunction. J Biol Chem 289(31):21490–21507

    Article  Google Scholar 

  • Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ (2011) Free tubulin modulates mitochondrial membrane potential in cancer cells. Cancer Res 70(24):10192–10201

    Article  Google Scholar 

  • Maldonado EN, Sheldon KL, DeHart DN, Patnaik J, Manevich Y, Townsend DM, Bezrukov SM, Rostovtseva TK, Lemasters JJ (2013) Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin. J Biol Chem 288(17):11920–11929

    Article  Google Scholar 

  • Mariani M, Karki R, Spennato M, Pandya D, He S, Andreoli M, Fiedler P, Ferlini C (2015) Class III beta-tubulin in normal and cancer tissues. Gene 563(2):109–114

    Article  Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824

    Article  Google Scholar 

  • Middleton ER, Rhoades E (2010) Effects of curvature and composition on alpha-synuclein binding to lipid vesicles. Biophys J 99(7):2279–2288

    Article  Google Scholar 

  • Minelli A, Bellezza I, Conte C, Culig Z (2009) Oxidative stress-related aging: a role for prostate cancer? Biochim Biophys Acta 1795(2):83–91

    Google Scholar 

  • Minoura I, Hachikubo Y, Yamakita Y, Takazaki H, Ayukawa R, Uchimura S, Muto E (2013) Overexpression, purification, and functional analysis of recombinant human tubulin dimer. FEBS Lett 587(21):3450–3455

    Article  Google Scholar 

  • Monge C, Beraud N, Kuznetsov AV, Rostovtseva T, Sackett D, Schlattner U, Vendelin M, Saks VA (2008) Regulation of respiration in brain mitochondria and synaptosomes: restrictions of ADP diffusion in situ, roles of tubulin, and mitochondrial creatine kinase. Mol Cell Biochem 318(1–2):94–1562

    Google Scholar 

  • Monteiro JP, Oliveira PJ, Jurado AS (2013) Mitochondrial membrane lipid remodeling in pathophysiology: a new target for diet and therapeutic interventions. Prog Lipid Res 52(4):513–528

    Article  Google Scholar 

  • Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4(5):819–834

    Article  Google Scholar 

  • Neely MD, Sidell KR, Graham DG, Montine TJ (1999) The lipid peroxidation product 4-hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules, and modifies cellular tubulin. J Neurochem 72(6):2323–2333

    Article  Google Scholar 

  • Nettles JH, Li HL, Cornett B, Krahn JM, Snyder JP, Downing KH (2004) The binding mode of epothilone A on alpha, beta-tubulin by electron crystallography. Science 305(5685):866–869

    Article  ADS  Google Scholar 

  • Nicolson GL, Ash ME (2014) Lipid replacement therapy: a natural medicine approach to replacing damaged lipids in cellular membranes and organelles and restoring function. Biochim Biophys Acta 1838(6):1657–1679

    Article  Google Scholar 

  • Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391(6663):199–203

    Article  ADS  Google Scholar 

  • Noskov SY, Rostovtseva TK, Bezrukov SM (2013) ATP transport through VDAC and the VDAC-tubulin complex probed by equilibrium and nonequilibrium MD simulations. Biochemistry 52(51):9246–9256

    Article  Google Scholar 

  • Noskov SY, Rostovtseva TK, Chamberlin AC, Teijido O, Jiang W, Bezrukov SM (2016) Current state of theoretical and experimental studies of the voltage-dependent anion channel (VDAC). Biochim Biophys Acta 1858(7 Pt B):1778–1790

    Article  Google Scholar 

  • Olivero A, Miglietta A, Gadoni E, Gabriel L (1990) 4-hydroxynonenal interacts with tubulin by reacting with its functional -SH groups. Cell Biochem Funct 8(2):99–105

    Article  Google Scholar 

  • Pamplona R (2008) Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochim Biophys Acta 1777(10):1249–1262

    Article  Google Scholar 

  • Panis C, Herrera AC, Victorino VJ, Campos FC, Freitas LF, De Rossi T, Colado Simao AN, Cecchini AL, Cecchini R (2012) Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treat 133(1):89–97

    Article  Google Scholar 

  • Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2011) Mitochondrial dysfunction in brain aging: role of oxidative stress and cardiolipin. Neurochem Int 58(4):447–457

    Article  Google Scholar 

  • Paradies G, Paradies V, Ruggiero FM, Petrosillo G (2014) Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol 20(39):14205–14218

    Article  Google Scholar 

  • Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2008) Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci 65(7–8):1272–1284

    Article  Google Scholar 

  • Pennington K, Peng J, Hung CC, Banks RE, Robinson PA (2010) Differential effects of wild-type and A53T mutant isoform of alpha-synuclein on the mitochondrial proteome of differentiated SH-SY5Y cells. J Proteome Res 9(5):2390–2401

    Article  Google Scholar 

  • Peterson U, Mannock DA, Lewis RN, Pohl P, McElhaney RN, Pohl EE (2002) Origin of membrane dipole potential: contribution of the phospholipid fatty acid chains. Chem Phys Lipids 117(1–2):19–27

    Article  Google Scholar 

  • Pfefferkorn CM, Heinrich F, Sodt AJ, Maltsev AS, Pastor RW, Lee JC (2012a) Depth of α-synuclein in a bilayer determined by fluorescence, neutron reflectometry, and computation. Biophys J 102(3):613–621

    Article  Google Scholar 

  • Pfefferkorn CM, Jiang Z, Lee JC (2012b) Biophysics of alpha-synuclein membrane interactions. Biochim Biophys Acta 1818(2):162–171

    Article  Google Scholar 

  • Porcelli AM, Ghelli A, Zanna C, Pinton P, Rizzuto R, Rugolo M (2005) pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem Biophys Res Commun 326(4):799–804

    Article  Google Scholar 

  • Rhoades E, Ramlall TF, Webb WW, Eliezer D (2006) Quantification of alpha-synuclein binding to lipid vesicles using fluorescence correlation spectroscopy. Biophys J 90(12):4692–4700

    Article  Google Scholar 

  • Ribas V, Garcia-Ruiz C, Fernandez-Checa JC (2016) Mitochondria, cholesterol and cancer cell metabolism. Clin Transl Med 5(1):22

    Article  Google Scholar 

  • Riekkinen P, Rinne UK, Pelliniemi TT, Sonninen V (1975) Interaction between dopamine and phospholipids. Studies of the substantia nigra in Parkinson disease patients. Arch Neurol 32(1):25–27

    Article  Google Scholar 

  • Rochet JC, Hay BA, Guo M (2012) Molecular insights into Parkinson’s disease. Prog Mol Biol Transl Sci 107:125–188

    Article  Google Scholar 

  • Rostovtseva TK, Bezrukov SM (2012) VDAC inhibition by tubulin and its physiological implications. Biochim Biophys Acta 1818(6):1526–1535

    Article  Google Scholar 

  • Rostovtseva TK, Bezrukov SM (2015) Function and regulation of mitochondrial voltage-dependent anion channel. In: Delcour AH (ed) Electrophysiology of unconventional channels and pores. Springer, Switzerland, pp 3–31

    Chapter  Google Scholar 

  • Rostovtseva T, Colombini M (1996) ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane. J Biol Chem 271(45):28006–28008

    Article  Google Scholar 

  • Rostovtseva T, Colombini M (1997) VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Biophys J 72(5):1954–1962

    Article  Google Scholar 

  • Rostovtseva TK, Komarov A, Bezrukov SM, Colombini M (2002a) Dynamics of nucleotides in VDAC channels: structure-specific noise generation. Biophys J 82(1):193–205

    Article  Google Scholar 

  • Rostovtseva TK, Komarov A, Bezrukov SM, Colombini M (2002b) VDAC channels differentiate between natural metabolites and synthetic molecules. J Membr Biol 187(2):147–156

    Article  Google Scholar 

  • Rostovtseva TK, Tan WZ, Colombini M (2005) On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr 37(3):129–142

    Article  Google Scholar 

  • Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, Bezrukov SM, Sackett DL (2008) Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci U S A 105(48):18746–18751

    Article  ADS  Google Scholar 

  • Rostovtseva TK, Gurnev PA, Chen MY, Bezrukov SM (2012) Membrane lipid composition regulates tubulin interaction with mitochondrial voltage-dependent anion channel. J Biol Chem 287(35):29589–29598

    Article  Google Scholar 

  • Rostovtseva TK, Gurnev PA, Protchenko O, Hoogerheide DP, Yap TL, Philpott CC, Lee JC, Bezrukov SM (2015) Alpha-synuclein shows high affinity interaction with voltage-dependent anion channel, suggesting mechanisms of mitochondrial regulation and toxicity in Parkinson disease. J Biol Chem 290(30):18467–18477

    Article  Google Scholar 

  • Ruiperez V, Darios F, Davletov B (2010) Alpha-synuclein, lipids and Parkinson’s disease. Prog Lipid Res 49(4):420–428

    Article  Google Scholar 

  • Saetersdal T, Greve G, Dalen H (1990) Associations between beta-tubulin and mitochondria in adult isolated heart myocytes as shown by immunofluorescence and immunoelectron microscopy. Histochemistry 95(1):1–10

    Article  Google Scholar 

  • Schafer B, Quispe J, Choudhary V, Chipuk JE, Ajero TG, Du H, Schneiter R, Kuwana T (2009) Mitochondrial outer membrane proteins assist bid in Bax-mediated lipidic pore formation. Mol Biol Cell 20(8):2276–2285

    Article  Google Scholar 

  • Schein SJ, Colombini M, Finkelstein A (1976) Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol 30(2):99–120

    Article  Google Scholar 

  • Schlame M, Ren M (2006) Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett 580(23):5450–5455

    Article  Google Scholar 

  • Seve P, Dumontet C (2010) Class III beta tubulin expression in nonsmall cell lung cancer. Rev Mal Respir 27(4):383–386

    Article  Google Scholar 

  • Shamas-Din A, Bindner S, Chi X, Leber B, Andrews DW, Fradin C (2015) Distinct lipid effects on tBid and Bim activation of membrane permeabilization by pro-apoptotic Bax. Biochem J 467(3):495–505

    Article  Google Scholar 

  • Shavali S, Brown-Borg HM, Ebadi M, Porter J (2008) Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cells. Neurosci Lett 439(2):125–128

    Article  Google Scholar 

  • Shen J, Du T, Wang X, Duan C, Gao G, Zhang J, Lu L, Yang H (2014) Alpha-synuclein amino terminus regulates mitochondrial membrane permeability. Brain Res 1591:14–26

    Article  Google Scholar 

  • Shi Z, Sachs JN, Rhoades E, Baumgart T (2015) Biophysics of alpha-synuclein induced membrane remodelling. Phys Chem Chem Phys 17(24):15561–15568

    Article  Google Scholar 

  • Shoshan-Barmatz V, Ben-Hail D (2012) VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion 12(1):24–34

    Article  Google Scholar 

  • Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Asp Med 31(3):227–285

    Article  Google Scholar 

  • Sirajuddin M, Rice LM, Vale RD (2014) Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol 16(4):335–344

    Article  Google Scholar 

  • Siskind LJ, Kolesnick RN, Colombini M (2002) Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem 277(30):26796–26803

    Article  Google Scholar 

  • Sokolov VS, Kuzmin VG (1980) Study of surface-potential difference in bilayer-membranes according to the 2nd harmonic response of capacitance current. Biofizika 25(1):170–172

    Google Scholar 

  • Sparagna GC, Chicco AJ, Murphy RC, Bristow MR, Johnson CA, Rees ML, Maxey ML, McCune SA, Moore RL (2007) Loss of cardiac tetralinoleoyl cardiolipin in human and experimental heart failure. J Lipid Res 48(7):1559–1570

    Article  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    Article  ADS  Google Scholar 

  • Swartz KJ (2008) Sensing voltage across lipid membranes. Nature 456(7224):891–897

    Article  ADS  Google Scholar 

  • Terrones O, Antonsson B, Yamaguchi H, Wang HG, Liu JH, Lee RM, Herrmann A, Basanez G (2004) Lipidic pore formation by the concerted action of proapoptotic BAX and tBID. J Biol Chem 279(29):30081–30091

    Article  Google Scholar 

  • Tyurina YY, Polimova AM, Maciel E, Tyurin VA, Kapralova VI, Winnica DE, Vikulina AS, Domingues MR, McCoy J, Sanders LH et al (2015) LC/MS analysis of cardiolipins in substantia nigra and plasma of rotenone-treated rats: implication for mitochondrial dysfunction in Parkinson’s disease. Free Radic Res 49(5):681–691

    Article  Google Scholar 

  • Ujwal R, Cascio D, Colletier J-P, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A 105(46):17742–17747

    Article  ADS  Google Scholar 

  • Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 280(10):9595–9603

    Article  Google Scholar 

  • Vemu A, Atherton J, Spector JO, Szyk A, Moores CA, Roll-Mecak A (2016) Structure and dynamics of single-isoform recombinant neuronal human tubulin. J Biol Chem:12907–12915

    Google Scholar 

  • Wang S, Witt SN (2014) The Parkinson’s disease-associated protein α-synuclein disrupts stress signaling–a possible implication for methamphetamine use? Microb Cell 1(4):131

    Article  Google Scholar 

  • Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4(12):938–947

    Article  Google Scholar 

  • Wilson JF (2003) Long-suffering lipids gain respect: technical advances and enhanced understanding of lipid biology fuel a trend toward lipidomics. (Lab consumer). Scientist 17(5):34–37

    Google Scholar 

  • Wolff J (2009) Plasma membrane tubulin. Biochim Biophys Acta 1788(7):1415–1433

    Article  Google Scholar 

  • Yethon JA, Epand RF, Leber B, Epand RM, Andrews DW (2003) Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J Biol Chem 278(49):48935–48941

    Article  Google Scholar 

  • Zinser E, Sperka-Gottlieb CD, Fasch EV, Kohlwein SD, Paltauf F, Daum G (1991) Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J Bacteriol 173(6):2026–2034

    Article  Google Scholar 

Download references

Acknowledgments

These studies were supported by the Intramural Research Program of the NIH, Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana K. Rostovtseva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rostovtseva, T.K., Hoogerheide, D.P., Rovini, A., Bezrukov, S.M. (2017). Lipids in Regulation of the Mitochondrial Outer Membrane Permeability, Bioenergetics, and Metabolism. In: Rostovtseva, T. (eds) Molecular Basis for Mitochondrial Signaling. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-55539-3_8

Download citation

Publish with us

Policies and ethics