Advertisement

An Online Platform for the Automatic Reporting of Multi-parametric Tissue Signatures: A Case Study in Glioblastoma

  • Javier Juan-AlbarracínEmail author
  • Elies Fuster-Garcia
  • Juan M. García-Gómez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10154)

Abstract

Glioblastomas are infiltrative and deeply invasive neoplasms characterized by high vascular proliferation and diffuse margins. As a consequence, this lesion presents a high degree of heterogeneity that requires being studied through a multiparametric combination of several imaging sequences. Nowadays few systems are available to perform a relevant multiparametric analysis of this tumour. In this work, we present the study of GBM by means of http://mtsimaging.com, an online platform for the automatic reporting of multiparametric tissue signatures. The platform implements two full automated GBM pipelines: (1) the anatomical pipeline, which involves MRI preprocessing and tumour segmentation; and (2) the hemodynamic MTS pipeline, which adds the quantification of perfusion parameters and a nosologic segmentation map of the vascular habitats of the GBM. A radiologic report summarizes the findings of both analysis and provides volumetric and perfusion statistics of each tissue and habitat of the tumour.

Keywords

Glioblastoma Segmentation Perfusion quantification Vascular habitats On-line service 

Notes

Acknowledgments

This work was partially supported by project TIN2013-43457-R: Caracterización de firmas biológicas de glioblastomas mediante modelos no-supervisados de predicción estructurada basados en biomarcadores de imagen, co-funded by the Ministerio de Economía y Competitividad of Spain; by project DPI2016-80054-R: Biomarcadores dinamicos basados en firmas tisulares multiparametricas para el seguimiento y evaluacion de la respuesta a tratamiento de pacientes con glioblastoma y cancer de prostata; by project Spanish EIT Proof of Concept grant (PoC-2016-SPAIN-07) entitled MULTIBIOIM: Multiparametric nosological images for supporting clinical decisions in solid tumors; by project CON2016-C05 UPV-IISLaFe: Inclusión de las tecnologías de firma tisular y modelos mutiescala para el soporte a la planificación de la radioterapia en el tratamiento del glioblastoma, funded by Instituto de Investigación Sanitaria H. Universitario y Politécnico La Fe; by project CON2014002 UPV-IISLaFe: Empleo de segmentación no supervisada multiparamétrica basada en perfusión RM para la caracterización del edema peritumoral de gliomas y metástasis cerebrales únicas, funded by Instituto de Investigación Sanitaria H. Universitario y Politécnico La Fe; and by Instituto de Aplicaciónes de las Tecnologías de la Información y las Comunicaciones Avanzadas (ITACA). E. Fuster-Garcia acknowledges the financial support from the program PAID- 10-14: Ayudas para la Contratación de Doctores para el Acceso al SECTI founded by the Universitat Politécnica de Valéncia.

References

  1. 1.
    Soeda, A., Hara, A., Kunisada, T., Yoshimura, S., Iwama, T., Park, D.M.: The evidence of glioblastoma heterogeneity. Nat. Sci. Rep. 5(7979), 1–7 (2015)Google Scholar
  2. 2.
    von Deimling, A.: Gliomas. Recent Results in Cancer Research, vol. 171. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Fuster-Garcia, E., García-Gómez, J.M., De Angelis, E., Sraum, A., Molnar, A., Van Huffel, S., Stamatakos, G.: Use case II: imaging biomarkers and new trends for integrated glioblastoma management. In: Martí-Bonmatí, L., Alberich-Bayarri, A. (eds.) Imaging Biomarkers, pp. 181–194. Springer, Heidelberg (2017)CrossRefGoogle Scholar
  4. 4.
    Knopp, E.A., Cha, S., Johnson, G., Mazumdar, A., Golfinos, J.G., Zagzag, D., Miller, D.C., Kelly, P.J., Kricheff, I.I.: Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211(3), 791–798 (1999)CrossRefGoogle Scholar
  5. 5.
    Shah, M.K., Shin, W., Parikh, V.S., Ragin, A., Mouannes, J., Bernstein, R.A., Walker, M.T., Bhatt, H., Carroll, T.J.: Quantitative cerebral MR perfusion imaging: preliminary results in stroke. J. Magn. Reson. Imaging 32(4), 796–802 (2010)CrossRefGoogle Scholar
  6. 6.
    Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  7. 7.
    Juan-Albarracín, J., Fuster-Garcia, E., Robles, M., Manjón-Herrera, J.V., Sáez-Silvestre, C., Esparza-Manzano, M., García-Gómez, J.M.: Patent ESP201431289: Método y sistema de generación de imágenesnosológicas multiparamétricas, 19 October 2015Google Scholar
  8. 8.
    Manjón, J.V., Coupé, P., Martí-Bonmatí, L., Collins, D.L., Robles, M.: Adaptive non-local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31(1), 192–203 (2010)CrossRefGoogle Scholar
  9. 9.
    Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)CrossRefGoogle Scholar
  10. 10.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)CrossRefGoogle Scholar
  11. 11.
    Juan-Albarracín, J., Fuster-Garcia, E., Manjón, J.V., Robles, M., Aparici, F., Martí-Bonmatí, L., García-Gómez, J.M.: Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLOS One 10(5), 1–20 (2015)CrossRefGoogle Scholar
  12. 12.
    Juan-Albarracín, J., Fuster-Garcia, E., García-Gómez, J.M.: Glioblastoma tissue-guided segmentation through unsupervisedstructured classification. In: Proceedings of II International Symposium onClinical and Basic Investigation in Glioblastoma, vol. 1, no. 3, p. 101 (2015)Google Scholar
  13. 13.
    Nikou, C., Galatsanos, N.P., Likas, C.L.: A class-adaptive spatially variant mixture model for image segmentation. IEEE Trans. Image Process. 16(4), 1121–1130 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Boxerman, J.L., Schmainda, K.M., Weisskoff, R.M.: Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. Am. J. Neuroradiol. 27(4), 859–867 (2006)Google Scholar
  15. 15.
    Tofts, P.S.: Quantitative MRI of the Brain: Measuring Changes Caused by Disease, vol. 1. Wiley, England (2005). West Sussex PO19 8SQGoogle Scholar
  16. 16.
    Quarles, C.C., Gore, J.C., Xu, L., Yankeelov, T.E.: Comparison of dual-echo DSC-MRI- and DCE-MRI-derived contrast agent kinetic parameters. Magn. Reson. Imaging 30(7), 944–953 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Javier Juan-Albarracín
    • 1
    Email author
  • Elies Fuster-Garcia
    • 1
  • Juan M. García-Gómez
    • 1
  1. 1.Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA)Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations