Advertisement

Brain Tumor Segmentation by Variability Characterization of Tumor Boundaries

  • Edgar A. Rios PiedraEmail author
  • Benjamin M. Ellingson
  • Ricky K. Taira
  • Suzie El-Saden
  • Alex A. T. Bui
  • William Hsu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10154)

Abstract

Automated medical image analysis can play an important role in diagnoses and treatment assessment, but integration and interpretation across heterogeneous data sources remain significant challenges. In particular, automated estimation of tumor extent in glioblastoma patients has been challenging given the diversity of tumor shapes and appearance characteristics due to differences in magnetic resonance (MR) imaging acquisition parameters, scanner variations and heterogeneity in tumor biology. With this work, we present an approach for automated tumor segmentation using multimodal MR images. The algorithm considers the variability arising from the intrinsic tumor heterogeneity and segmentation error to derive the tumor boundary and produce an estimate of segmentation error. Using the MICCAI 2015 dataset, a Dice coefficient of 0.74 was obtained for whole tumor, 0.55 for tumor core, and 0.54 for active tumor, achieving above average performance in comparison to other approaches evaluated on the BRATS benchmark.

Keywords

Glioblastoma Brain tumor Segmentation variability Automatic segmentation 

References

  1. 1.
    Omuro, A., DeAngelis, L.M.: Glioblastoma and other malignant gliomas: a clinical review. JAMA 310(17), 1842–1850 (2013)CrossRefGoogle Scholar
  2. 2.
    Inda, M., Bonavia, R., Seoane, J.: Glioblastoma multiforme: a look inside its heterogeneous nature. Cancers 6(1), 226–239 (2014)CrossRefGoogle Scholar
  3. 3.
    Wen, P.Y., et al.: Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. JCO 28(11), 1963–1972 (2010)CrossRefGoogle Scholar
  4. 4.
    Bauer, S., et al.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97 (2013)CrossRefGoogle Scholar
  5. 5.
    Huo, J., et al.: Ensemble segmentation for GBM brain tumors on MR images using confidence-based averaging. Med. Phys. 40(9), 093502 (2013)CrossRefGoogle Scholar
  6. 6.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  7. 7.
    Jenkinson, M., Bannister, P.R., Brady, J.M., Smith, S.M.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2), 825–841 (2002)CrossRefGoogle Scholar
  8. 8.
    The AFNI program (Analysis of Functional NeuroImages). National Institute of Health, USA. https://afni.nimh.nih.gov/afni/. Accessed Sept 2016
  9. 9.
    Vaseghi, S.V.: Advanced Digital Signal Processing and Noise Reduction. Wiley, Hoboken (2008)CrossRefGoogle Scholar
  10. 10.
    Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26(3), 839–851 (2005)CrossRefGoogle Scholar
  11. 11.
    Ji, S., et al.: A new multistage medical segmentation method based on superpixel and fuzzy clustering. Comput. Math. Methods Med. 2014, 01–15 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Achanta, R., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  13. 13.
    Nechifor, R.E., et al.: Novel magnetic resonance imaging techniques in brain tumors. Top. Magn. Reson. Imaging 24(3), 137–146 (2015)CrossRefGoogle Scholar
  14. 14.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Edgar A. Rios Piedra
    • 1
    • 2
    • 3
    Email author
  • Benjamin M. Ellingson
    • 2
    • 3
  • Ricky K. Taira
    • 1
    • 2
    • 3
  • Suzie El-Saden
    • 1
    • 2
    • 3
  • Alex A. T. Bui
    • 1
    • 2
    • 3
  • William Hsu
    • 1
    • 2
    • 3
  1. 1.Medical Imaging Informatics Group, Department of Radiological SciencesUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Radiological Sciences, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  3. 3.Department of BioengineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations