Advertisement

DeepMedic for Brain Tumor Segmentation

  • Konstantinos KamnitsasEmail author
  • Enzo Ferrante
  • Sarah Parisot
  • Christian Ledig
  • Aditya V. Nori
  • Antonio Criminisi
  • Daniel Rueckert
  • Ben Glocker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10154)

Abstract

Accurate automatic algorithms for the segmentation of brain tumours have the potential of improving disease diagnosis, treatment planning, as well as enabling large-scale studies of the pathology. In this work we employ DeepMedic [1], a 3D CNN architecture previously presented for lesion segmentation, which we further improve by adding residual connections. We also present a series of experiments on the BRATS 2015 training database for evaluating the robustness of the network when less training data are available or less filters are used, aiming to shed some light on requirements for employing such a system. Our method was further benchmarked on the BRATS 2016 Challenge, where it achieved very good performance despite the simplicity of the pipeline.

Keywords

Convolutional Neural Network Conditional Random Field Training Database Segmentation Task Tumour Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by the EPSRC (grant No: EP/N023668/1) and partially funded under the 7th Framework Programme by the European Commission (TBIcare: http://www.tbicare.eu/; CENTER-TBI: https://www.center-tbi.eu/). Part of this work was carried on when KK was an intern at Microsoft Research Cambridge. KK is also supported by the President’s PhD Scholarship of Imperial College London. We gratefully acknowledge the support of NVIDIA Corporation with the donation of two Titan X GPUs for our research.

References

  1. 1.
    Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2016)CrossRefGoogle Scholar
  2. 2.
    Mazzara, G.P., Velthuizen, R.P., Pearlman, J.L., Greenberg, H.M., Wagner, H.: Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. Int. J. Radiat. Oncol. Biol. Phys. 59(1), 300–312 (2004)CrossRefGoogle Scholar
  3. 3.
    Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)CrossRefGoogle Scholar
  4. 4.
    Gooya, A., Pohl, K.M., Bilello, M., Biros, G., Davatzikos, C.: Joint segmentation and deformable registration of brain scans guided by a tumor growth model. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 532–540. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23629-7_65 CrossRefGoogle Scholar
  5. 5.
    Parisot, S., Duffau, H., Chemouny, S., Paragios, N.: Joint tumor segmentation and dense deformable registration of brain MR images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 651–658. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33418-4_80 CrossRefGoogle Scholar
  6. 6.
    Zikic, D., et al.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33454-2_46 CrossRefGoogle Scholar
  7. 7.
    Tustison, N., Wintermark, M., Durst, C., Brian, A.: ANTs and arboles. In: Proceedings of BRATS-MICCAI (2013)Google Scholar
  8. 8.
    Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: Proceedings of BRATS-MICCAI (2014)Google Scholar
  9. 9.
    Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)CrossRefGoogle Scholar
  10. 10.
    Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  11. 11.
    Bakas, S., et al.: GLISTRboost: combining multimodal MRI segmentation, registration, and biophysical tumor growth modeling with gradient boosting machines for glioma segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 144–155. Springer, Cham (2016). doi: 10.1007/978-3-319-30858-6_13 CrossRefGoogle Scholar
  12. 12.
    Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural networks. arXiv preprint arXiv:1505.03540 (2015)
  13. 13.
    Lyksborg, M., Puonti, O., Agn, M., Larsen, R.: An ensemble of 2D convolutional neural networks for tumor segmentation. In: Paulsen, R.R., Pedersen, K.S. (eds.) SCIA 2015. LNCS, vol. 9127, pp. 201–211. Springer, Cham (2015). doi: 10.1007/978-3-319-19665-7_17 CrossRefGoogle Scholar
  14. 14.
    Kamnitsas, K., Chen, L., Ledig, C., Rueckert, D., Glocker, B.: Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI. Ischemic Stroke Lesion Segm., 13–16 (2015)Google Scholar
  15. 15.
    Maier, O., Menze, B.H., von der Gablentz, J., Häni, L., Heinrich, M.P., Liebrand, M., Winzeck, S., Basit, A., Bentley, P., Chen, L., et al.: ISLES 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)CrossRefGoogle Scholar
  16. 16.
    Alansary, A., et al.: Fast fully automatic segmentation of the human placenta from motion corrupted MRI. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 589–597. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_68 CrossRefGoogle Scholar
  17. 17.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
  18. 18.
    He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. arXiv preprint arXiv:1603.05027 (2016)
  19. 19.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  20. 20.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)
  21. 21.
    Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. Adv. Neural Inf. Process. Syst. 24, 109–117 (2011)Google Scholar
  22. 22.
    Chang, P.D.: Fully convolutional neural networks with hyperlocal features for brain tumor segmentation. In: Proceedings of BRATS-MICCAI (2016)Google Scholar
  23. 23.
    Le Folgoc, L., Nori, A.V., Alvarez-Valle, J., Lowe, R., Criminisi, A.: Segmentation of brain tumors via cascades of lifted decision forests. In: Proceedings of BRATS-MICCAI (2016)Google Scholar
  24. 24.
    Zhao, X., Wu, Y., Song, G., Li, Z., Fan, Y., Zhang, Y.: Brain tumor segmentation using a fully convolutional neural network with conditional random field. In: Proceedings of BRATS-MICCAI (2016)Google Scholar
  25. 25.
    Zeng, K., Bakas, S., Sotiras, A., Akbari, H., Rozycki, M., Rathore, S., Pati, S., Davatzikos, C.: Segmentation of gliomas in pre-operative and post-operative multimodal magnetic resonance imaging volumes based on a hybrid generative-discriminative framework. In: Proceedings of BRATS-MICCAI (2016)Google Scholar
  26. 26.
    Meier, R., Knecht, U., Wiest, R., Reyes, M.: CRF-based brain tumor segmentation: alleviating the shrinking bias. In: Proceedings of BRATS-MICCAI (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Konstantinos Kamnitsas
    • 1
    • 2
    Email author
  • Enzo Ferrante
    • 1
  • Sarah Parisot
    • 1
  • Christian Ledig
    • 1
  • Aditya V. Nori
    • 2
  • Antonio Criminisi
    • 2
  • Daniel Rueckert
    • 1
  • Ben Glocker
    • 1
  1. 1.Biomedical Image Analysis GroupImperial College LondonLondonUK
  2. 2.Microsoft ResearchCambridgeUK

Personalised recommendations