Skip to main content

Plant Non-coding RNAs and the New Paradigms

  • Chapter
  • First Online:

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Non-coding RNAs vary greatly in length, shape and function. Growing interest and recent evidence have identified some of them as essential elements for life, as well as for environmental adaptation and development. Since non-coding RNAs by definition do not code for proteins, their ever-growing roles pose a paradigm shift in biology. In this chapter, we will discuss our current knowledge of two distinct plant non-coding RNAs: long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). These two classes of non-coding transcripts are relatively well characterized in plants, and regulate gene expression through distinct modes of action. We thus anticipate that our current mechanistic knowledge of lncRNAs and miRNAs will provide the basis for future studies of non-coding RNAs in plant genetics and epigenetics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams DR, Ron D, Kiely PA (2011) RACK1, A multifaceted scaffolding protein: structure and function. Cell Commun Signal 9:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen TA, Von Kaenel S, Goodrich JA et al (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11:816–821

    Article  CAS  PubMed  Google Scholar 

  • Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14:475–488

    Article  CAS  PubMed  Google Scholar 

  • Amor BB, Wirth S, Merchan F et al (2009) Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19:57–69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Andres-Pablo A, Morillon A, Wery M (2017) LncRNAs, lost in translation or licence to regulate? Curr Genet 63:29

    Google Scholar 

  • Ariel F, Jegu T, Latrasse D et al (2014) Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell 55:383–396

    Article  CAS  PubMed  Google Scholar 

  • Baek D, Villén J, Shin C et al (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardou F, Merchan F, Ariel F et al (2011) Dual RNAs in plants. Biochimie 93:1950–1954

    Article  CAS  PubMed  Google Scholar 

  • Bardou F, Ariel F, Simpson CG et al (2014) Long noncoding RNA modulates alternative splicing regulators in Arabidopsis. Dev Cell 30:166–176

    Article  CAS  PubMed  Google Scholar 

  • Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  • Blevins T, Pontvianne F, Cocklin R et al (2014) A two-step process for epigenetic inheritance in Arabidopsis. Mol Cell 54:30–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böhmdorfer G, Wierzbicki AT (2015) Control of chromatin structure by long noncoding RNA. Trends Cell Biol 25:623–632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boualem A, Laporte P, Jovanovic M et al (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876–887

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Burk DH, Zhong R, Ye Z-H (2007) The katanin microtubule severing protein in plants. J Integr Plant Biol 49:1174–1182

    Article  CAS  Google Scholar 

  • Campalans A, Kondorosi A, Crespi M (2004) Enod40, a short open reading frame–containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula. Plant Cell 16:1047–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonell A, Fahlgren N, Garcia-Ruiz H et al (2012) Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. Plant Cell 24:3613–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlevaro-Fita J, Rahim A, Guigó R et al (2016) Cytoplasmic long noncoding RNAs are frequently bound to and degraded at ribosomes in human cells. RNA 22:867–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrieri C, Cimatti L, Biagioli M et al (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–457

    Article  CAS  PubMed  Google Scholar 

  • Ceci M, Gaviraghi C, Gorrini C et al (2003) Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature 426:579–584

    Article  CAS  PubMed  Google Scholar 

  • Cerase A, Pintacuda G, Tattermusch A et al (2015) Xist localization and function: new insights from multiple levels. Genome Biol 16:166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang S-S, Zhang Z, Liu Y (2012) RNA interference pathways in fungi: mechanisms and functions. Annu Rev Microbiol 66:305–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Combier J-P, Frugier F, de Billy F et al (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crevillén P, Dean C (2011) Regulation of the floral repressor gene FLC: the complexity of transcription in a chromatin context. Curr Opin Plant Biol 14:38–44

    Article  PubMed  CAS  Google Scholar 

  • Csorba T, Questa JI, Sun Q et al (2014) Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc Natl Acad Sci USA 111:16160–16165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czech B, Hannon GJ (2010) Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12:19–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniels SM, Gatignol A (2012) The multiple functions of TRBP, at the hub of cell responses to viruses, stress, and cancer. Microbiol Mol Biol Rev 76:652–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis BN, Hilyard AC, Lagna G et al (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Lu Q, Ouyang Y et al (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA 109:2654–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Z, Han M-H, Fedoroff N (2008) The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA 105:9970–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eamens AL, Smith NA, Curtin SJ et al (2009) The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 15:2219–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eamens AL, Kim KW, Curtin SJ et al (2012) DRB2 is required for microRNA biogenesis in Arabidopsis thaliana. PLoS One 7:e35933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelsberger WR, Schulze WX (2012) Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. Plant J 69:978–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei Q, Xia R, Meyers BC (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25:2400–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Friedman RC, Farh KK-H, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • German MA, Pillay M, Jeong D-H et al (2008) Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946

    Article  CAS  PubMed  Google Scholar 

  • Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470:284–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant-Downton R, Kourmpetli S, Hafidh S et al (2013) Artificial microRNAs reveal cell-specific differences in small RNA activity in pollen. Curr Biol 23:R599–R601

    Article  CAS  PubMed  Google Scholar 

  • Gregory RI, Yan K, Amuthan G et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    Article  CAS  PubMed  Google Scholar 

  • Grimson A, Farh KK-H, Johnston WK et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS et al (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Wang S, Valerius O et al (2011) Involvement of Arabidopsis RACK1 in protein translation and its regulation by abscisic acid. Plant Physiol 155:370–383

    Article  CAS  PubMed  Google Scholar 

  • Hellens RP, Brown CM, Chisnall MAW et al (2016) The emerging world of small ORFs. Trend Plant Sci 21(4):317–332

    Article  CAS  Google Scholar 

  • Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79

    Article  CAS  PubMed  Google Scholar 

  • Herr AJ, Jensen MB, Dalmay T et al (2005) RNA polymerase IV directs silencing of endogenous DNA. Science 308:118–120

    Article  CAS  PubMed  Google Scholar 

  • Hongay CF, Grisafi PL, Galitski T et al (2006) Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 127:735–745

    Article  CAS  PubMed  Google Scholar 

  • Hutvágner G, McLachlan J, Pasquinelli AE et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    Article  PubMed  Google Scholar 

  • Jabnoune M, Secco D, Lecampion C et al (2013) A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. Plant Cell 25:4166–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jannot G, Bajan S, Giguère NJ et al (2011) The ribosomal protein RACK1 is required for microRNA function in both C. elegans and humans. EMBO Rep 12:581–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanno T, Huettel B, Mette MF et al (2005) Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet 37:761–765

    Article  CAS  PubMed  Google Scholar 

  • Karginov FV, Cheloufi S, Chong MMW et al (2010) Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, drosha, and additional nucleases. Mol Cell 38:781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T-K, Hemberg M, Gray JM et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kretz M, Siprashvili Z, Chu C et al (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493:231–235

    Article  CAS  PubMed  Google Scholar 

  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753–12758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:206–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurihara Y, Matsui A, Hanada K et al (2009) Genome-wide suppression of aberrant mRNA-like noncoding RNAs by NMD in Arabidopsis. Proc Natl Acad Sci USA 106:2453–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14:2162–2167

    Article  CAS  PubMed  Google Scholar 

  • Lanet E, Delannoy E, Sormani R et al (2009) Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell 21:1762–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latos PA, Pauler FM, Koerner MV et al (2012) Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338:1469–1472

    Article  CAS  PubMed  Google Scholar 

  • Lauressergues D, Couzigou J-M, Clemente HS et al (2015) Primary transcripts of microRNAs encode regulatory peptides. Nature 520:90–93

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Nakahara K, Pham JW et al (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81

    Article  CAS  PubMed  Google Scholar 

  • Li J-F, Chung HS, Niu Y et al (2013a) Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. Plant Cell 25:1507–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Liu L, Zhuang X et al (2013b) MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153:562–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Notani D, Ma Q et al (2013c) Functional importance of eRNAs for estrogen-dependent transcriptional activation events. Nature 498:516–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T-Y, Huang T-K, Tseng C-Y et al (2012) PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell 24:2168–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Wang H, Chua N-HH (2015) Long noncoding RNA transcriptome of plants. Plant Biotechnol J 13:319–328

    Article  CAS  PubMed  Google Scholar 

  • Lobbes D, Rallapalli G, Schmidt DD et al (2006) SERRATE: a new player on the plant microRNA scene. EMBO Rep 7:1052–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas SJ, Baştaş K, Budak H (2014) Exploring the interaction between small RNAs and R genes during Brachypodium response to Fusarium culmorum infection. Gene 536:254–264

    Article  CAS  PubMed  Google Scholar 

  • Machida S, Yuan YA (2013) Crystal structure of Arabidopsis thaliana Dawdle forkhead-associated domain reveals a conserved phospho-threonine recognition cleft for Dicer-like 1 binding. Mol Plant 6:1290–1300

    Article  CAS  PubMed  Google Scholar 

  • Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22:3879–3889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manavella PA, Hagmann J, Ott F et al (2012) Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 151:859–870

    Article  CAS  PubMed  Google Scholar 

  • Mariner PD, Walters RD, Espinoza CA et al (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29:499–509

    Article  CAS  PubMed  Google Scholar 

  • Martianov I, Ramadass A, Serra Barros A et al (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445:666–670

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS, Rinn JL (2015) Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 22:5–7

    Article  CAS  PubMed  Google Scholar 

  • Meijer HA, Kong YW, Lu W et al (2013) Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science 340:82–85

    Article  CAS  PubMed  Google Scholar 

  • Melo CA, Drost J, Wijchers PJ et al (2013) eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49:524–535

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD, Amasino RM (1999) Flowering locus C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onodera Y, Haag JR, Ream T et al (2005) Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120:613–622

    Article  CAS  PubMed  Google Scholar 

  • Ørom UA, Derrien T, Beringer M et al (2010) Long non-coding RNAs with enhancer-like function in human. Cell 143:46–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pélissier T, Clavel M, Chaparro C et al (2011) Double-stranded RNA binding proteins DRB2 and DRB4 have an antagonistic impact on polymerase IV-dependent siRNA levels in Arabidopsis. RNA 17:1502–1510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Penny GD, Kay GF, Sheardown SA et al (1996) Requirement for Xist in X chromosome inactivation. Nature 379:131–137

    Article  CAS  PubMed  Google Scholar 

  • Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17:47–62

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J et al (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis RS, Eamens AL, Waterhouse PM (2015a) Missing pieces in the puzzle of plant microRNAs. Trends Plant Sci 20:721–728

    Article  CAS  PubMed  Google Scholar 

  • Reis RS, Hart-Smith G, Eamens AL et al (2015b) Gene regulation by translational inhibition is determined by Dicer partnering proteins. Nat Plants 1:14027

    Article  CAS  PubMed  Google Scholar 

  • Reis RS, Hart-Smith G, Eamens AL et al (2015c) MicroRNA regulatory mechanisms play different roles in Arabidopsis. J Proteome Res 14:4743–4751

    Article  CAS  PubMed  Google Scholar 

  • Reis RS, Eamens AL, Roberts TH et al (2016) Chimeric DCL1-partnering proteins provide insights into the microRNA pathway. Front Plant Sci 6:1–11

    Article  Google Scholar 

  • Reynoso MA, Blanco FA, Bailey-Serres J et al (2013) Selective recruitment of mRNAs and miRNAs to polyribosomes in response to rhizobia infection in Medicago truncatula. Plant J 73:289–301

    Article  CAS  PubMed  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by non-coding RNAs. Cell 129:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrig H, Schmidt J, Miklashevichs E et al (2002) Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci USA 99:1915–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley MJ, Avrutsky MI, Sifuentes CJ et al (2011) Independent chromatin binding of ARGONAUTE4 and SPT5L/KTF1 mediates transcriptional gene silencing. PLoS Genet 7:e1002120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Orera J, Messeguer X, Subirana JA et al (2014) Long non-coding RNAs as a source of new peptides. elife 3:e03523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin HH-SS, Shin HH-SS, Chen R et al (2006) Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J 45:712–726

    Article  CAS  PubMed  Google Scholar 

  • Sinturel F, Navickas A, Wery M et al (2015) Cytoplasmic control of sense-antisense mRNA pairs. Cell Rep 12:1853–1864

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Song J-J, Smith SK, Hannon GJ et al (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437

    Article  CAS  PubMed  Google Scholar 

  • Speth C, Willing E-M, Rausch S et al (2013) RACK1 scaffold proteins influence miRNA abundance in Arabidopsis. Plant J 76:433–445

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Csorba T, Skourti-Stathaki K et al (2013) R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 340:619–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swiezewski S, Liu F, Magusin A et al (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target. Nature 462:799–802

    Article  CAS  PubMed  Google Scholar 

  • Tobias P, Guest DI (2014) Tree immunity: growing old without antibodies. Trends Plant Sci 19:367–370

    Article  CAS  PubMed  Google Scholar 

  • Ulveling D, Francastel C, Hubé F (2011) When one is better than two: RNA with dual functions. Biochimie 93:633–644

    Article  CAS  PubMed  Google Scholar 

  • Vazquez F, Gasciolli V, Crété P et al (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Juranek S, Li H et al (2009) Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461:754–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Song X, Gu L et al (2013) NOT2 proteins promote polymerase II–dependent transcription and interact with multiple microRNA biogenesis factors in Arabidopsis. Plant Cell 25:715–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Xue Y, Han Y et al (2014a) The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344:310–313

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang X, Deng W et al (2014b) Genomic features and regulatory roles of intermediate-sized non-coding RNAs in Arabidopsis. Mol Plant 7:514–527

    Article  CAS  PubMed  Google Scholar 

  • Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA polymerase pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135:635–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wierzbicki AT, Ream TS, Haag JR et al (2009) RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat Genet 41:630–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H-J, Wang Z-M, Wang M et al (2013a) Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161:1875–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Shi Y, Li J et al (2013b) A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis. Cell Res 23:645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SW, Chen H-Y, Yang J et al (2010) Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing. Structure 18:594–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Wu G, Poethig RS (2012) Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. Proc Natl Acad Sci USA 109:315–320

    Article  CAS  PubMed  Google Scholar 

  • Ye R, Wang W, Iki T et al (2012) Cytoplasmic assembly and selective nuclear import of Arabidopsis ARGONAUTE4/siRNA complexes. Mol Cell 46:859–870

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Abdelmohsen K, Srikantan S et al (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47:648–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Bi L, Zheng B et al (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci USA 105:10073–10078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai J, Jeong D-H, De Paoli E et al (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wong CH, Birnbaum RY et al (2013) Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504:306–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Q, Rowley MJ, Böhmdorfer G et al (2013) RNA polymerase V targets transcriptional silencing components to promoters of protein-coding genes. Plant J 73:179–189

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Rowley MJ, Böhmdorfer G et al (2013) A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing. Mol Cell 49:298–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu QH, Stephen S, Taylor J et al (2014) Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. New Phytol 201:574–584

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Siqueira Reis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Reis, R.S., Deforges, J. (2017). Plant Non-coding RNAs and the New Paradigms. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Plant Epigenetics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-55520-1_9

Download citation

Publish with us

Policies and ethics