Skip to main content

Small RNA Biogenesis and Degradation in Plants

  • Chapter
  • First Online:

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Small RNAs (sRNAs), ~20–25 nucleotide (nt) in size, regulate various biological processes in plants through directing sequence-specific gene silencing. sRNAs are derived from either single- or double-stranded precursor RNAs. Proper levels of sRNAs are crucial for plant growth, development, genomic stability, and adaptation to abiotic and biotic stresses. Studies have identified the machineries controlling sRNA levels through biogenesis and degradation. This chapter covers recent progresses related to mechanisms governing small RNA biogenesis and degradation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe M, Yoshikawa T, Nosaka M et al (2010) WAVY LEAF1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining microRNA and trans-acting small interfering RNA accumulation in rice. Plant Physiol 154:1335–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adenot X, Elmayan T, Lauressergues D et al (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16:927–932

    Article  CAS  PubMed  Google Scholar 

  • Allen E, Xie Z, Gustafson AM et al (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Ameres SL, Horwich MD, Hung JH et al (2010) Target RNA-directed trimming and tailing of small silencing RNAs. Science 328:1534–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameres SL, Hung JH, Xu J et al (2011) Target RNA-directed tailing and trimming purifies the sorting of endo-siRNAs between the two Drosophila Argonaute proteins. RNA 17:54–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arikit S, Xia R, Kakrana A et al (2014) An atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes. Plant Cell 26:4584–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ, Jan C, Rajagopalan R et al (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–577

    Article  CAS  PubMed  Google Scholar 

  • Baranauske S, Mickute M, Plotnikova A et al (2015) Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins. Nucleic Acids Res 43:2802–2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Ben Chaabane S, Liu R, Chinnusamy V et al (2013) STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res 41:1984–1997

    Article  CAS  PubMed  Google Scholar 

  • Billi AC, Alessi AF, Khivansara V et al (2012) The Caenorhabditis elegans HEN1 ortholog, HENN-1, methylates and stabilizes select subclasses of germline small RNAs. PLoS Genet 8:e1002617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blevins T, Pontvianne F, Cocklin R et al (2014) A two-step process for epigenetic inheritance in Arabidopsis. Mol Cell 54:30–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blevins T, Podicheti R, Mishra V et al (2015) Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. elife 4:e09591

    Article  PubMed  PubMed Central  Google Scholar 

  • Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503

    Article  CAS  PubMed  Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borsani O, Zhu J, Verslues PE et al (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burroughs AM, Ando Y, de Hoon MJ et al (2010) A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Res 20:1398–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsbecker A, Lee JY, Roberts CJ et al (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14:100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan CM, Zhou C, Brunzelle JS et al (2009a) Structural and biochemical insights into 2′-O-methylation at the 3′-terminal nucleotide of RNA by Hen1. Proc Natl Acad Sci USA 106:17699–17704

    Article  CAS  Google Scholar 

  • Chan CM, Zhou C, Huang RH (2009b) Reconstituting bacterial RNA repair and modification in vitro. Science 326:247

    Article  CAS  PubMed  Google Scholar 

  • Chang HM, Triboulet R, Thornton JE et al (2013) A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature 497:244–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chellappan P, Xia J, Zhou X et al (2010) siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Res 38:6883–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen T, Cui P, Xiong L (2015) The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis. Nucleic Acids Res 43:8283–8298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SK, Ben Chaabane S, Shah P et al (2014) COP1 E3 ligase protects HYL1 to retain microRNA biogenesis. Nat Commun 5:5867

    Article  CAS  PubMed  Google Scholar 

  • Choi K, Kim J, Muller SY et al (2016) Regulation of microRNA-mediated developmental changes by the SWR1 chromatin remodeling complex. Plant Physiol 171:1128–1143

    PubMed  PubMed Central  Google Scholar 

  • Coruh C, Shahid S, Axtell MJ (2014) Seeing the forest for the trees: annotating small RNA producing genes in plants. Curr Opin Plant Biol 18C:87–95

    Article  Google Scholar 

  • Dong Z, Han MH, Fedoroff N (2008) The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA 105:9970–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunoyer P, Brosnan CA, Schott G et al (2010) An endogenous, systemic RNAi pathway in plants. EMBO J 29:1699–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Spector DL (2007) Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 17:818–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang X, Cui Y, Li Y et al (2015a) Transcription and processing of primary microRNAs are coupled by elongator complex in Arabidopsis. Nat Plants 1:15075

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Shi Y, Liu X et al (2015b) CMA33/XCT regulates small RNA production through modulating the transcription of dicer-like genes in Arabidopsis. Mol Plant 8:1227–1236

    Article  CAS  PubMed  Google Scholar 

  • Fei Q, Xia R, Meyers BC (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25:2400–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francisco-Mangilet AG, Karlsson P, Kim MH et al (2015) THO2, a core member of the THO/TREX complex, is required for microRNA production in Arabidopsis. Plant J 82:1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Fujioka Y, Utsumi M, Ohba Y et al (2007) Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis. Plant Cell Physiol 48:1243–1253

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga R, Doudna JA (2009) dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO J 28:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia D, Garcia S, Pontier D et al (2012) Ago hook and RNA helicase motifs underpin dual roles for SDE3 in antiviral defense and silencing of nonconserved intergenic regions. Mol Cell 48:109–120

    Article  CAS  PubMed  Google Scholar 

  • Gasciolli V, Mallory AC, Bartel DP et al (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15:1494–1500

    Article  CAS  PubMed  Google Scholar 

  • Gregory BD, O'Malley RC, Lister R et al (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 14:854–866

    Article  CAS  PubMed  Google Scholar 

  • Haag JR, Ream TS, Marasco M et al (2012) In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol Cell 48:811–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haag JR, Brower-Toland B, Krieger EK et al (2014) Functional diversification of maize RNA polymerase IV and V subtypes via alternative catalytic subunits. Cell Rep 9:378–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajheidari M, Farrona S, Huettel B et al (2012) CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II. Plant Cell 24:1626–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han BW, Hung JH, Weng Z et al (2011) The 3′-to-5′ exoribonuclease Nibbler shapes the 3′ ends of microRNAs bound to Drosophila Argonaute1. Curr Biol 21:1878–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herr AJ, Jensen MB, Dalmay T et al (2005) RNA polymerase IV directs silencing of endogenous DNA. Science 308:118–120

    Article  CAS  PubMed  Google Scholar 

  • Horwich MD, Li C, Matranga C et al (2007) The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 17:1265–1272

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Ji LJ, Huang QC et al (2009) Structural insights into mechanisms of the small RNA methyltransferase HEN1. Nature 461:823–U886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim F, Rohr J, Jeong WJ et al (2006) Untemplated oligoadenylation promotes degradation of RISC-cleaved transcripts. Science 314:1893–1893

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim F, Rymarquis LA, Kim EJ et al (2010) Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc Natl Acad Sci USA 107:3906–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson C, Kasprzewska A, Tennessen K et al (2009) Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19:1429–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Kamminga LM, Luteijn MJ, den Broeder MJ et al (2010) Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J 29:3688–3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamminga LM, van Wolfswinkel JC, Luteijn MJ et al (2012) Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans. PLoS Genet 8:e1002702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson P, Christie MD, Seymour DK et al (2015) KH domain protein RCF3 is a tissue-biased regulator of the plant miRNA biogenesis cofactor HYL1. Proc Natl Acad Sci USA 112:14096–14101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katiyar-Agarwal S, Morgan R, Dahlbeck D et al (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA 103:18002–18007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khraiwesh B, Arif MA, Seumel GI et al (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Yang JY, Xu J et al (2008) Two cap-binding proteins CBP20 and CBP80 are involved in processing primary microRNAs. Plant Cell Physiol 49:1634–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim W, Benhamed M, Servet C et al (2009) Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res 19:899–909

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Zheng B, Yu Y et al (2011) The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 30:814–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirino Y, Mourelatos Z (2007) The mouse homolog of HEN1 is a potential methylase for Piwi-interacting RNAs. RNA 13:1397–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koster T, Meyer K, Weinholdt C et al (2014) Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis. Nucleic Acids Res 42:9925–9936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lange H, Holec S, Cognat V et al (2008) Degradation of a polyadenylated rRNA maturation by-product involves one of the three RRP6-like proteins in Arabidopsis thaliana. Mol Cell Biol 28:3038–3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laubinger S, Sachsenberg T, Zeller G et al (2008) Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:8795–8800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law JA, Vashisht AA, Wohlschlegel JA et al (2011) SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV. PLoS Genet 7:e1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law JA, Du J, Hale CJ et al (2013) Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498:385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yang Z, Yu B et al (2005) Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15:1501–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Vandivier LE, Tu B et al (2015) Detection of Pol IV/RDR2-dependent transcripts at the genomic scale in Arabidopsis reveals features and regulation of siRNA biogenesis. Genome Res 25:235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Abe M, Sabin LR et al (2011) The exoribonuclease Nibbler controls 3′ end processing of microRNAs in Drosophila. Curr Biol 21:1888–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machida S, Yuan YA (2013) Crystal structure of Arabidopsis thaliana Dawdle forkhead-associated domain reveals a conserved phospho-threonine recognition cleft for dicer-like 1 binding. Mol Plant 6:1290–1300

    Article  CAS  PubMed  Google Scholar 

  • Manavella PA, Hagmann J, Ott F et al (2012) Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 151:859–870

    Article  CAS  PubMed  Google Scholar 

  • Mari-Ordonez A, Marchais A, Etcheverry M et al (2013) Reconstructing de novo silencing of an active plant retrotransposon. Nat Genet 45:1029–1039

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408

    Article  CAS  PubMed  Google Scholar 

  • McCue AD, Panda K, Nuthikattu S et al (2015) ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation. EMBO J 34:20–35

    Article  CAS  PubMed  Google Scholar 

  • Montgomery TA, Rim YS, Zhang C et al (2012) PIWI associated siRNAs and piRNAs specifically require the Caenorhabditis elegans HEN1 ortholog henn-1. PLoS Genet 8:e1002616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu D, Lii YE, Chellappan P et al (2016) miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection. Nat Commun 7:11324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozawa M, Miura S, Nei M (2012) Origins and evolution of microRNA genes in plant species. Genome Biol Evol 4:230–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nuthikattu S, McCue AD, Panda K et al (2013) The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs. Plant Physiol 162:116–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohara T, Sakaguchi Y, Suzuki T et al (2007) The 3′ termini of mouse Piwi-interacting RNAs are 2′-O-methylated. Nat Struct Mol Biol 14:349–350

    Article  CAS  PubMed  Google Scholar 

  • Onodera Y, Haag JR, Ream T et al (2005) Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120:613–622

    Article  CAS  PubMed  Google Scholar 

  • Peragine A, Yoshikawa M, Wu G et al (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18:2368–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14:814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontier D, Picart C, Roudier F et al (2012) NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin-based pathway in Arabidopsis. Mol Cell 48:121–132

    Article  CAS  PubMed  Google Scholar 

  • Raghuram B, Sheikh AH, Rustagi Y et al (2015) MicroRNA biogenesis factor DRB1 is a phosphorylation target of mitogen activated protein kinase MPK3 in both rice and Arabidopsis. FEBS J 282:521–536

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J et al (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran V, Chen X (2008) Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321:1490–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ream TS, Haag JR, Wierzbicki AT et al (2009) Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol Cell 33:192–203

    Article  CAS  PubMed  Google Scholar 

  • Ren G, Yu B (2012) Critical roles of RNA-binding proteins in miRNA biogenesis in Arabidopsis. RNA Biol 9:1424–1428

    Article  CAS  PubMed  Google Scholar 

  • Ren G, Chen X, Yu B (2012a) Uridylation of miRNAs by HEN1 SUPPRESSOR1 in Arabidopsis. Curr Biol 22:695–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren G, Xie M, Dou Y et al (2012b) Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci USA 109:12817–12821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren G, Chen X, Yu B (2014a) Small RNAs meet their targets: when methylation defends miRNAs from uridylation. RNA Biol 11:1099–1104

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren G, Xie M, Zhang S et al (2014b) Methylation protects microRNAs from an AGO1-associated activity that uridylates 5′ RNA fragments generated by AGO1 cleavage. Proc Natl Acad Sci USA 111:6365–6370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron M, Alandete Saez M, Eshed Williams L et al (2010) Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev 24:1010–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronemus M, Vaughn MW, Martienssen RA (2006) MicroRNA-targeted and small interfering RNA-mediated mRNA degradation is regulated by argonaute, dicer, and RNA-dependent RNA polymerase in Arabidopsis. Plant Cell 18:1559–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K, Sakaguchi Y, Suzuki T et al (2007) Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev 21:1603–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen BZ, Goodman HM (2004) Uridine addition after microRNA-directed cleavage. Science 306:997–997

    Article  CAS  PubMed  Google Scholar 

  • Shivaprasad PV, Chen HM, Patel K et al (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24:859–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotkin RK, Freeling M, Lisch D (2005) Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet 37:641–644

    Article  CAS  PubMed  Google Scholar 

  • Smith LM, Pontes O, Searle I et al (2007) An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell 19:1507–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Li P, Zhai J et al (2012a) Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J 69:462–474

    Article  CAS  PubMed  Google Scholar 

  • Song X, Wang D, Ma L et al (2012b) Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development. Plant J 71:378–389

    CAS  PubMed  Google Scholar 

  • Speth C, Willing EM, Rausch S et al (2013) RACK1 scaffold proteins influence miRNA abundance in Arabidopsis. Plant J 76:433–445

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Guo T, Liu Y et al (2015) The roles of Arabidopsis CDF2 in transcriptional and posttranscriptional regulation of primary microRNAs. PLoS Genet 11:e1005598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tu B, Liu L, Xu C et al (2015) Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLoS Genet 11:e1005119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ustianenko D, Hrossova D, Potesil D et al (2013) Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA 19:1632–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Song X, Gu L et al (2013) NOT2 proteins promote polymerase II-dependent transcription and interact with multiple MicroRNA biogenesis factors in Arabidopsis. Plant Cell 25:715–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang S, Dou Y et al (2015) Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3′ tailing of small RNAs in Arabidopsis. PLoS Genet 11:e1005091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu L, Zhou H, Zhang Q et al (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Mao L, Qi Y (2012) Roles of dicer-like and argonaute proteins in TAS-derived small interfering RNA-triggered DNA methylation. Plant Physiol 160:990–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Shi Y, Li J et al (2013) A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis. Cell Res 23:645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyman SK, Knouf EC, Parkin RK et al (2011) Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res 21:1450–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Yu B (2015) siRNA-directed DNA methylation in plants. Curr Genomics 16:23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie ZX, Allen E, Fahlgren N et al (2005) Expression of Arabidopsis MIRNA genes. Plant Physiol 138:2145–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Zhang S, Yu B (2015) microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci 72:87–99

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Gu Y, Jia X et al (2012) Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell 24:415–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Ebright YW, Yu B et al (2006) HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res 34:667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang GD, Yan K, Wu BJ et al (2012) Genomewide analysis of intronic microRNAs in rice and Arabidopsis. J Genet 91:313–324

    Article  CAS  PubMed  Google Scholar 

  • Yang DL, Zhang G, Tang K et al (2016) Dicer-independent RNA-directed DNA methylation in Arabidopsis. Cell Res 26:66–82

    Article  CAS  PubMed  Google Scholar 

  • Ye R, Chen Z, Lian B et al (2016) A dicer-independent route for biogenesis of siRNAs that Direct DNA methylation in Arabidopsis. Mol Cell 61:222–235

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa M, Peragine A, Park MY et al (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Yang Z, Li J et al (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Bi L, Zheng BL et al (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci USA 105:10073–10078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai J, Jeong DH, De Paoli E et al (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai J, Zhao Y, Simon SA et al (2013) Plant microRNAs display differential 3′ – truncation and tailing, modifications which are ARGONAUTE1-dependent and conserved across species. Plant Cell 25:2417–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai J, Bischof S, Wang H et al (2015a) A one precursor one siRNA model for pol IV-dependent siRNA biogenesis. Cell 163:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai J, Zhang H, Arikit S et al (2015b) Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci USA 112:3146–3151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan X, Wang B, Li H et al (2012) Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc Natl Acad Sci USA 109:18198–18203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Xia J, Lii YE et al (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 13:R20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Ma ZY, Zeng L et al (2013a) DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV. Proc Natl Acad Sci USA 110:8290–8295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Xie M, Ren G et al (2013b) CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. Proc Natl Acad Sci USA 110:17588–17593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Liu Y, Yu B (2014) PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. PLoS Genet 10:e1004841

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Liu Y, Yu B (2015) New insights into pri-miRNA processing and accumulation in plants. Wiley Interdiscip Rev RNA 6:533–545

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Yu Y, Zhai J et al (2012) The Arabidopsis nucleotidyl transferase HESO1 uridylates unmethylated small RNAs to trigger their degradation. Curr Biol 22:689–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng B, Wang Z, Li S et al (2009) Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev 23:2850–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Hu F, Wang R et al (2011) Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:242–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zubko E, Meyer P (2007) A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation. Plant J 52:1131–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by Nebraska Soybean Board (Award 16R-05-3/3 #1706 to B.Y) and National Science Foundation (OIA-1557417 to B.Y).

Note

Due to the comprehensive nature of the review topic and limited space allowed for the paper, we apologize to the scientists whose work is not cited here.

No conflict interest declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yu, Q., Liu, Y., Li, M., Yu, B. (2017). Small RNA Biogenesis and Degradation in Plants. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Plant Epigenetics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-55520-1_6

Download citation

Publish with us

Policies and ethics