Skip to main content

Small RNAs: Master Regulators of Epigenetic Silencing in Plants

  • Chapter
  • First Online:
Plant Epigenetics

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

From fairly simple beginnings, research on epigenetic silencing in plants has revealed a highly complex epigenetic pathway. In the last two decades, several interesting phenomena associated with epigenetic regulation in plants were dissected giving insights into the biological significance of epigenetic marks and the role it plays in an organism’s life cycle by controlling different physiological processes like plant development, morphogenesis, reproduction, and stress response. Epigenetics refers to either heritable or reversible genetic modifications in DNA or histone proteins that maintain the nucleosome structure in a dynamic manner or those mediated by small RNAs (sRNAs) that in turn modulate gene expression. Plants are equipped with intricate regulatory mechanism to elicit highly sequence-specific chromatin-based gene silencing. Diverse classes of RNAs like small interfering RNA (siRNA), microRNAs (miRNAs), and long noncoding RNAs (lnc RNAs) have emerged as key regulators of gene expression along with several accessory proteins. sRNAs are widespread in various eukaryotes and are specifically involved in the maintenance of chromatin modifications in plants. These sRNAs regulate gene expression in different ways including post-transcriptional gene silencing (PTGS) in cytosol by targeting complementary transcripts for degradation, thereby repressing protein synthesis. In nucleus, sRNAs are responsible for transcriptional gene silencing (TGS) by directing epigenetic modifications like cytosine or histone methylation to homologous regions of the genome. This chapter gives an overview of the role of small RNAs in PTGS and TGS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alleman M, Sidorenko L, McGinnis K et al (2006) An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442:295–298

    Article  CAS  PubMed  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 11:2730–2741

    Article  CAS  Google Scholar 

  • Baker CC, Sieber P, Wellmer F et al (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15:303–315

    Article  CAS  PubMed  Google Scholar 

  • Barreto G, Schafer A, Marhold J et al (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445:671–675

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development. Plant Physiol 132:709–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  CAS  PubMed  Google Scholar 

  • Bond DM, Baulcombe DC (2014) Small RNAs and heritable epigenetic variation in plants. Trends Cell Biol 24:100–107

    Article  CAS  PubMed  Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borsani O, Zhu J, Verslues PE et al (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS et al (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16(Suppl):S18–S31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossdorf O, Arcuri D, Richards CL et al (2010) Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evol Ecol 24:541–553

    Article  Google Scholar 

  • Boualem A, Laporte P, Jovanovic M et al (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876–887

    Article  CAS  PubMed  Google Scholar 

  • Cao XF, Jacobsen SE (2002a) Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci U S A 99(suppl 4):16491–16498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, Jacobsen SE (2002b) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Cartolano M, Castillo R, Efremova N et al (2007) A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet 39:901–905

    Article  CAS  PubMed  Google Scholar 

  • Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14:100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360

    Article  CAS  PubMed  Google Scholar 

  • Chandler VL, Walbot V (1986) DNA modification of a maize transposable element correlates with loss of activity. Proc Natl Acad Sci U S A 83:1767–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chellappan P, Xia J, Zhou X et al (2010) siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Res 38:6883–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X (2004) A microRNA as a translational represser of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Chuck G, Cigan AM, Saeteurn K et al (2007) The heterochronic maize mutant corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549

    Article  CAS  PubMed  Google Scholar 

  • Cokus SJ, Feng S, Zhang X et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combier JP, Frugier F, De Billy F et al (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depicker A, Sanders M, Meyer P (2005) Transgene silencing. Plant Epigenetics 19:1–32

    Article  CAS  Google Scholar 

  • Finke A, Kuhlmann M, Mette MF (2012) IDN2 has a role downstream of siRNA formation in RNA directed DNA methylation. Epigenetics 7:950–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto R, Kinoshita Y, Kawabe A et al (2008) Evolution and control of imprinted FWA genes in the genus Arabidopsis. PLoS Genet 4:e1000048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao Z, Liu HL, Daxinger L et al (2010) An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature 465:106–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazzani S, Gendall AR, Lister C et al (2003) Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol 132:1107–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerald JNF, Hui PS, Berger F (2009) Polycomb group-dependent imprinting of the actin regulator AtFH5 regulates morphogenesis in Arabidopsis thaliana. Development 136:3399–3404

    Article  CAS  Google Scholar 

  • Guleria P, Mahajan M, Bhardwaj J et al (2011) Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. Genomics Proteomics Bioinformatics 9:183–199

    Article  CAS  PubMed  Google Scholar 

  • Guo HS, Xie Q, Fei JF et al (2005) Micro RNA directs mRNA cleavage of the transcription factor NAC1 to down regulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in post transcriptional gene silencing in plants. Science 286:950–952

    Article  CAS  PubMed  Google Scholar 

  • Havecker ER, Wallbridge LM, Hardcastle TJ et al (2010) The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 22:321–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilbricht T, Varotto S, Sgaramella V et al (2008) Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytol 179:877–887

    Article  CAS  PubMed  Google Scholar 

  • Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito H (2012) Small RNAs and transposon silencing in plants. Dev Growth Differ 54:100–107

    Article  CAS  PubMed  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Yan J, Tang G (2011) Micro RNA-mediated DNA methylation in plants. Front Biol 6:133–139

    Article  CAS  Google Scholar 

  • Johannes F, Porcher E, Teixeira FK et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5:1000530

    Article  CAS  Google Scholar 

  • Juarez MT, Kui JS, Thomas J et al (2004) MicroRNA-mediated repression of rolled leaf specifies maize leaf polarity. Nature 428:84–88

    Article  CAS  PubMed  Google Scholar 

  • Jullien PE, Kinoshita T, Ohad N et al (2006) Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18:1360–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung HJ, Kang H (2007) Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol Biochem 45:805–811

    Article  CAS  PubMed  Google Scholar 

  • Kanno T, Huettel B, Mette MF et al (2005) A typical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet 37:761–765

    Article  CAS  PubMed  Google Scholar 

  • Kanno T, Bucher E, Daxinger L et al (2008) A structural maintenance of chromosome hinge domain-containing protein is required for RNA-directed DNA methylation. Nat Genet 40:670–675

    Article  CAS  PubMed  Google Scholar 

  • Kanno T, Bucher E, Daxinger L et al (2010) RNA-directed DNA methylation and plant development require an IWR1-type transcription factor. EMBO Rep 11:65–71

    Article  CAS  PubMed  Google Scholar 

  • Kathiria P, Sidler C, Golubov A et al (2010) Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants. Plant Physiol 153:1859–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katiyar-Agarwal S, Morgan R, Dahlbeck D et al (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A 103:18002–18007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Takashima K, Kakutani T (2004) Epigenetic control of CACTA transposon mobility in Arabidopsis. Genetics 168:961–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Yadegari R, Harada JJ et al (1999) Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11:1945–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T, Miura A, Choi Y et al (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521–523

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita Y, Saze H, Kinoshita T et al (2007) Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J 49:38–45

    Article  CAS  PubMed  Google Scholar 

  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101:12753–12758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latzel V, Zhang Y, Moritz K et al (2012) Epigenetic variation in plant responses to defence hormones. Ann Bot 110:1423–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law JA, Du J, Hale CJ et al (2013) Polymerase-IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498:385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TF, Gurazada SG, Zhai J et al (2012) RNA polymerase V-dependent small RNAs in Arabidopsis originate from small, intergenic loci including most SINE repeats. Epigenetics 7:781–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lelandais-Briere C, Naya L, Sallet E et al (2009) Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 21:2780–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lelandais-Briere C, Sorin C, Declerck M et al (2010) Small RNA diversity in plants and its impact in development. Curr Genomics 11:14–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhang Q, Zhang J et al (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Pignatta D, Bendix C et al (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci U S A 109:1790–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431:364–370

    Article  CAS  PubMed  Google Scholar 

  • Lippman Z, Gendrel AV, Black M et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  CAS  PubMed  Google Scholar 

  • Liu J, He Y, Amasino R et al (2004) siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. Genes Dev 18:2873–2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorković ZJ, Naumann U, Matzke AJM et al (2012) Involvement of a GHKL ATPase in RNA directed DNA methylation in Arabidopsis thaliana. Curr Biol 22:933–938

    Article  PubMed  CAS  Google Scholar 

  • Matzke M, Kanno T, Daxinger L et al (2009) RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21:367–376

    Article  CAS  PubMed  Google Scholar 

  • Melnyk CW, Molnar A, Bassett A et al (2011) Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr Biol 21:1678–1683

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD, He YH, Scortecci KC et al (2003) Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci U S A 100:10102–10107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moldovan D, Spriggs A, Yang J et al (2010) Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot 61:165–177

    Article  CAS  PubMed  Google Scholar 

  • Mosher RA, Schwach F, Studholme D et al (2008) PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. Proc Natl Acad Sci U S A 105:3145–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moxon S, Jing R, Szittya G et al (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagasaki H, Itoh JI, Hayashi K et al (2007) The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci U S A 104:14867–14871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro L, Dunoyer P, Jay F et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Nicholson AW (2014) Ribonuclease III mechanisms of double-stranded RNA cleavage. Wiley Interdiscip Rev RNA 5:31–48

    Article  CAS  PubMed  Google Scholar 

  • Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M et al (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palatnik JF, Allen E, Wu X et al (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  CAS  PubMed  Google Scholar 

  • Park W, Li J, Song R et al (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 21:1484–1495

    Article  Google Scholar 

  • Park MY, Wu G, Gonzalez-Sulser A et al (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 8:3691–3696

    Article  CAS  Google Scholar 

  • Pikaard CS, Mittelsten Scheid O (2014) Epigenetic regulation in plants. Cold Spring Harb Perspect Biol 6:a019315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pontier D, Yahubyan G, Vega D et al (2005) Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 19:2030–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajeevkumar S, Anunanthini P, Sathishkumar R (2015) Epigenetic silencing in transgenic plants. Front Plant Sci 6:693

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmann S, De Vos M, Casteel CL et al (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–863

    Article  CAS  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP et al (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M et al (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Scoville AG, Barnett LL, Bodbyl-Roels S et al (2011) Differential regulation of a MYB transcription factor is correlated with transgenerational epigenetic inheritance of trichome density in Mimulus Guttatus. New Phytol 191:251–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidorenko L, Dorweiler JE, Cigan AM et al (2009) A dominant mutation in mediator of paramutation2, one of three second-largest subunits of a plant-specific RNA polymerase, disrupts multiple siRNA silencing processes. PLoS Genet 5:e1000725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simon SA, Meyers BC (2011) Small RNA-mediated epigenetic modifications in plants. Curr Opin Plant Biol 14:148–155

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J et al (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Takuno S, Gaut BS (2012) Body-methylated genes in Arabidopsis thaliana are functionally important and evolve slowly. Mol Biol Evol 29:219–227

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Reinhart BJ, Bartel DP et al (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaucheret H, Vazquez F, Crété P et al (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vielle-Calzada JP, Thomas J, Spillane C et al (1999) Maintenance of genomic imprinting at the Arabidopsis Medea locus requires zygotic DDM1 activity. Genes Dev 13:2971–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkov RA, Komarova NY, Zentgraf U et al (2006) Molecular cell biology: epigenetic gene silencing in plants. Prog Bot 67:101–133

    CAS  Google Scholar 

  • Wang JW, Wang LJ, Mao YB et al (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wierzbicki AT (2012) The role of long non-coding RNAs in transcriptional gene silencing. Curr Opin Plant Biol 15:517–522

    Article  CAS  PubMed  Google Scholar 

  • Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135:635–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wierzbicki AT, Ream TS, Haag JR et al (2009) RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat Genet 41:630–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams L, Grigg SP, Xie M et al (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132:3657–3668

    Article  CAS  PubMed  Google Scholar 

  • Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Zhou H, Zhang Q et al (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM et al (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM et al (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Ni Z, Peng H et al (2010) Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.) Funct Integr Genomics 10:187–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye R, Wang W, Iki T et al (2012) Cytoplasmic assembly and selective nuclear import of Arabidopsis ARGONAUTE4/siRNA complexes. Mol Cell 46:859–870

    Article  CAS  PubMed  Google Scholar 

  • Yu A, Lepère G, Jay F et al (2013) Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci U S A 110:2389–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Pan X, Cobb GP et al (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Henderson IR, Lu C et al (2007) Role of RNA polymerase IV in plant small RNA metabolism. Proc Natl Acad Sci U S A 104:4536–4541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wei L, Zou X et al (2008) Submergence-responsive microRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot 102:509–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhao H, Gao S et al (2011) Arabidopsis Argonaute 2 regulates innate immunity via miRNA393 mediated silencing of a Golgi-localized snare gene, MEMB12. Mol Cell 42:356–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CJ, Ning YQ, Zhang SW et al (2012) IDN2 and its paralogs form a complex required for RNA-directed DNA methylation. PLoS Genet 8:e1002693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, He X, Zhu JK (2013a) RNA-directed DNA methylation in plants: where to start? RNA Biol 10:1593–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Ma ZY, Zeng L et al (2013b) DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of pol IV. Proc Natl Acad Sci U S A 110:8290–8295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Wang G, Zhang W (2007) UV-B responsive microRNA genes in Arabidopsis thaliana. Mol Syst Biol 3:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Liu Y, Liu Z et al (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  CAS  PubMed  Google Scholar 

  • Zhu QH, Spriggs A, Matthew L et al (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18:1456–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilberman D, Henikoff S (2004) Silencing of transposons in plant genomes: kick them when they’re down. Genome Biol 5:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Zilberman D, Henikoff S (2007) Genome-wide analysis of DNA methylation patterns. Development 134:3959–3965

    Article  CAS  PubMed  Google Scholar 

  • Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:716–719

    Article  CAS  PubMed  Google Scholar 

  • Zilberman D, Cao X, Johansen LK et al (2004) Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol 14:1214–1220

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramalingam Sathishkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rajeev Kumar, S., Safia, Sathishkumar, R. (2017). Small RNAs: Master Regulators of Epigenetic Silencing in Plants. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Plant Epigenetics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-55520-1_5

Download citation

Publish with us

Policies and ethics