Skip to main content

Rice Epigenomics: How Does Epigenetic Manipulation of Crops Contribute to Agriculture?

  • Chapter
  • First Online:
Plant Epigenetics

Part of the book series: RNA Technologies ((RNATECHN))

  • 2601 Accesses

Abstract

Production of rice (Oryza sativa)—the staple food of over half the world’s population, especially those living in poverty—must continue to increase to meet the rising demand. The availability of a wide variety of natural rice resources has enabled highly efficient breeding approaches that have successfully improved productivity as well as biotic and abiotic stress tolerances. However, recent changes in global climate tendencies are imposing additional pressures on rice production, with the need for varieties showing unprecedented characteristics to counter adverse environments calling for innovative responses from breeders and researchers. Recent developments in epigenetic research in Arabidopsis thaliana have provided a plethora of data on epigenetic regulation in gene expression and development, paving the way to crop improvement via epigenetic manipulation. At ~400 Mb, the rice genome is the smallest among cereal crops and is relatively tractable with current molecular genetics techniques. This chapter begins by comparing characteristics of the rice genome and epigenome with those of Arabidopsis, before presenting some examples of epigenetic regulation in plants, with the emphasis on agriculturally important traits including abiotic stress responses. Most molecular studies on epigenetic modifications affecting plant phenotypes have been done in Arabidopsis, but examples of epigenetic regulation of agriculturally important traits in rice are accumulating rapidly. Current problems and difficulties in applying epigenetic manipulation to rice and ensuring stable maintenance of the modified epigenetic states to secure given agricultural traits under natural conditions will then be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimoto K, Katakami H, Kim HJ et al (2007) Epigenetic inheritance in rice plants. Ann Bot 100:205–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender J, Fink GR (1995) Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83:725–734

    Article  CAS  PubMed  Google Scholar 

  • Blevins T, Pontvianne F, Cocklin R et al (2014) A two-step process for epigenetic inheritance in Arabidopsis. Mol Cell 54:30–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyko A, Kovalchuk I (2011) Genome instability and epigenetic modification-heritable responses to environmental stress? Curr Opin Plant Biol 14:260–266

    Article  PubMed  Google Scholar 

  • Cabello JV, Lodeyro AF, Zurbriggen MD (2014) Novel perspectives for the engineering of abiotic stress tolerance in plants. Curr Opin Biotechnol 26:62–70

    Article  CAS  PubMed  Google Scholar 

  • Campos EI, Stafford JM, Reinberg D (2014) Epigenetic inheritance: histone bookmarks across generations. Trends Cell Biol 24:664–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, Jacobsen SE (2002) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen ZJ (2013) Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 14:471–482

    Article  CAS  PubMed  Google Scholar 

  • Chen LT, Wu K (2010) Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signal Behav 5:1318–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zhou DX (2013) Rice epigenomics and epigenetics: challenges and opportunities. Curr Opin Plant Biol 16:164–169

    Article  CAS  PubMed  Google Scholar 

  • Chen LT, Luo M, Wang YY et al (2010) Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61:3345–3353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Liu X, Zhao Y et al (2015) Histone H3K4me3 and H3K27me3 regulatory genes control stable transmission of an epimutation in rice. Sci Rep 5:13251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Dalal M, Zhu JK (2014) Epigenetic regulation of abiotic stress responses in plants. In: Jenks MA, Hasegawa PM (eds) Plant abiotic stress, 2nd edn. Wiley, Ames, pp 203–229

    Chapter  Google Scholar 

  • Chung PJ, Kim JK (2009) Epigenetic interaction of OsHDAC1 with the OsNAC6 gene promoter regulates rice root growth. Plant Signal Behav 4:675–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung PJ, Kim YS, Jeong JS et al (2009) The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that controls seedling root growth in rice. Plant J 59:764–776

    Article  CAS  PubMed  Google Scholar 

  • Cokus SJ, Feng S, Zhang X et al (2008) Shotgun bisulfite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colomé-Tatché M, Cortijo S, Wardenaar R et al (2012) Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation. Proc Natl Acad Sci U S A 109:16240–16245

    Article  PubMed  PubMed Central  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Jin P, Cui X et al (2013) Control of transposon activity by a histone H3K4 demethylase in rice. Proc Natl Acad Sci U S A 110:1953–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Climate Change 3:52–58

    Article  Google Scholar 

  • Dapp M, Reinders J, Bédiée A et al (2015) Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids. Nat Plants 1:15092

    Article  CAS  PubMed  Google Scholar 

  • Devoto A, Nieto-Rostro M, Xie D et al (2002) COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32:457–466

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Wang X, Su L et al (2007) SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Plant Cell 19:9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding B, del Rosario BM, Ning Y et al (2012) HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. Plant Cell 24:3783–3794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvick DN (2001) Biotechnology in the 1930s: the development of hybrid maize. Nat Rev Genet 2:69–74

    Article  CAS  PubMed  Google Scholar 

  • Eamans A, Vaistij FE, Jones L (2008) NRPD1a and NRPD1b are required to maintain post-transcriptional RNA silencing and RNA-directed DNA methylation in Arabidopsis. Plant J 55:596–606

    Article  CAS  Google Scholar 

  • Early KW, Pontvianne F, Wierzbicki AT et al (2010) Mechanisms of HDA6-mediated rRNA gene silencing: suppression of intergenic Pol II transcription and differential effects on maintenance versus siRNA-directed cytosine methylation. Genes Dev 24:1119–1132

    Article  CAS  Google Scholar 

  • Fedoroff NV (2013) The discovery of transposition. In: Fedoroff NV (ed) Plant transposons and genome dynamics in evolution. Wiley-Blackwell, Ames, pp 3–13

    Chapter  Google Scholar 

  • Feng S, Cokus SJ, Zhang X et al (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A 107:8689–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnegan EJ, Dennis ES (1993) Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res 21:2383–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleury D, Langridge P (2014) QTL and association mapping for plant abiotic stress tolerance: trait characterization and introgression for crop improvement. In: Jenks MA, Hasegawa PM (eds) Plant abiotic stress, 2nd edn. Wiley, Ames, pp 257–287

    Chapter  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2016a) Crop prospects and food situation. No. 2 Junee (http://www.fao.org/giews/english/cpfs/i5710e/i5710e.html)

  • Food and Agriculture Organization of the United Nations (2016b) Food outlook. June 2016 (http://www.fao.org/giews/english/fo/index.htm)

  • Fu W, Wu K, Duan J (2007) Sequence and expression analysis of histone deacetylases in rice. Biochem Biophys Res Commun 356:843–850

    Article  CAS  PubMed  Google Scholar 

  • Fuks F, Burgers WA, Brehm A et al (2000) DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 24:88–91

    Article  CAS  PubMed  Google Scholar 

  • Gerats AG, Huits H, Vrijlandt E et al (1990) Molecular characterization of a nonautonomous transposable element (dTph1) of petunia. Plant Cell 2:1121–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Z, Morales-Ruiz T, Ariza RR et al (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis encodes a DNA glycosylase/lyase. Cell 111:803–814

    Article  CAS  PubMed  Google Scholar 

  • Gowen JW (1952) Heterosis. A record of researches directed toward explaining and utilizing the vigor of hybrids. Iowa State College Press, Ames

    Book  Google Scholar 

  • Gu X, Jiang D, Yang W et al (2011) Arabidopsis homolog of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing. PLoS Genet 7:e1002366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habu Y, Ando T, Ito S et al (2015) Epigenomic modification in rice controls meiotic recombination and segregation distortion. Mol Breed 35:103

    Article  CAS  Google Scholar 

  • Hao Y, Wang H, Qiao S et al (2016) Histone deacetylase HDA6 enhances brassinosteroid signaling by inhibiting the BIN2 kinase. Proc Natl Acad Sci U S A 113:10418–10423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser MT, Aufsatz W, Jonak C et al (2011) Transgenerational epigenetic inheritance in plants. Biochem Biophys Acta 1809:459–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • He G, Zhu X, Elling AA et al (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Qin F, Huang L et al (2009) Rice histone deacetylase genes display specific expression patterns and developmental functions. Biochem Biophys Res Commun 388:266–271

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Li N, Xu C et al (2014) Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality. Proc Natl Acad Sci U S A 111:10642–10647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Yang S, Gong J et al (2016) Genomic architecture of heterosis for yield traits in rice. Nature 537:629–633

    Article  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Ito H, Gaubert H, Bucher E et al (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki M, Paszkowski J (2014a) Epigenetic memory in plants. EMBO J 33:1987–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki M, Paszkowski J (2014b) Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proc Natl Acad Sci U S A 111:8547–8552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang IC, Pahk YM, Song SI et al (2003) Structure and expression of the rice class-I type histone deacetylase genes OsHDAC1-3: OsHDAC1 overexpression in transgenic plants leads to increased growth rate and altered architecture. Plant J 33:531–541

    Article  CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Joshi R, Wani SH, Singh B et al (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung JH, Park JH, Lee S et al (2013) The cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 activates FLOWERING LOCUS C transcription via chromatin remodeling under short-term cold stress in Arabidopsis. Plant Cell 25:4378–4390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalisz S, Purugganan MD (2004) Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol Evol 19:309–314

    Article  PubMed  Google Scholar 

  • Kanno T, Habu Y (2011) siRNA-mediated chromatin maintenance and its function in Arabidopsis thaliana. Biochim Biophys Acta 1809:444–451

    Article  CAS  PubMed  Google Scholar 

  • Kanno T, Yoshikawa M, Habu Y (2013) Locus-specific requirements of DDR complexes for gene-body methylation of TAS genes in Arabidopsis thaliana. Plant Mol Biol Rep 31:1048–1052

    Article  CAS  Google Scholar 

  • Kasai A, Kasai K, Yumoto S et al (2007) Structural features of GmIRCHS, candidate of the I gene inhibiting seed coat pigmentation in soybean: implications for inducing endogenous RNA silencing of chalcone synthase genes. Plant Mol Biol 64:467–479

    Article  CAS  PubMed  Google Scholar 

  • Kawahara Y, de la Bastide M, Hamilton JP et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim To T, Kim JM, Matsui A et al (2011) Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1. PLoS Genet 7:e1002055

    Article  CAS  Google Scholar 

  • Kim W, Latrasse D, Servet C et al (2013) Arabidopsis histone deacetylase HDA9 regulates flowering time through repression of AGL19. Biochem Biophys Res Commun 432:394–398

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, Sasaki T, Ueda M et al (2015) Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci 6:114

    PubMed  PubMed Central  Google Scholar 

  • Kou HP, Li Y, Song XX et al (2011) Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice. J Plant Physiol 168:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Krieger U, Lippman ZB, Zamir D (2010) The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet 42:459–463

    Article  CAS  PubMed  Google Scholar 

  • Kusaba M, Miyahara K, Iida S et al (2003) Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15:1455–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WK, Cho MH (2016) Telomere-binding protein regulates the chromosome ends through the interaction with histone deacetylases in Arabidopsis thaliana. Nucleic Acids Res 44:4610–4624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Wang X, He K et al (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20:259–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhu J, Hu F et al (2012) Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation on plant gene expression. BMC Genomics 13:300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippman Z, Gendrel AV, Black M et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Yu CW, Duan J et al (2012) HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis. Plant Physiol 158:119–129

    Article  CAS  PubMed  Google Scholar 

  • Loidl P (2004) A plant dialect of the histone language. Trends Plant Sci 9:84–90

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Lv S, Zhang C et al (2013) Histone deacetylases and their functions in plants. Plant Cell Rep 32:465–478

    Article  CAS  PubMed  Google Scholar 

  • Mathieu O, Reinders J, Cáikovski M et al (2007) Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130:851–862

    Article  CAS  PubMed  Google Scholar 

  • Mehdi S, Derkacheva M, Ramström M et al (2016) The WD40 domain protein MSI1 functions in a histone deacetylase complex to fine-tune abscisic acid signaling. Plant Cell 28:42–54

    CAS  PubMed  Google Scholar 

  • Melamed-Bessudo C, Levy AA (2012) Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc Natl Acad Sci U S A 109:E981–E988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirouze M, Reinders J, Bucher E et al (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:427–430

    Article  CAS  PubMed  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14(3):267–274

    Google Scholar 

  • Mirouze M, Lieberman-Lazarovich M, Aversano R et al (2012) Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci U S A 109:5880–5885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura A, Yonebayashi S, Watanabe K et al (2001) Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 411:212–214

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Agetsuma M, Kitano H et al (2009) A metastable DWARF1 epigenetic mutant affecting plant stature in rice. Proc Natl Acad Sci U S A 106:11218–11223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moritoh S, Eun CH, Ono A et al (2012) Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation. Plant J 71:85–98

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S et al (2004) Sequencing of a rice centromere uncovers active genes. Nat Gent 36:138–145

    Article  CAS  Google Scholar 

  • Naito K, Cho E, Yang G et al (2006) Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci U S A 103:17620–17625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki S (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Nan X, Ng HH, Johnson CA et al (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    Article  CAS  PubMed  Google Scholar 

  • Numa H, Yamaguchi K, Shigenobu S et al (2015) Gene body CG and CHG methylation and suppression of centromeric CHH methylation are mediated by DECREASE IN DNA METHYLATION1 in rice. Mol Plant 8:1560–1562

    Article  CAS  PubMed  Google Scholar 

  • Nuthikattu S, McCue AD, Panda K et al (2013) The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs. Plant Physiol 162:116–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong-Abdullah M, Ordway JM, Jiang N et al (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525:533–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono A, Yamaguchi K, Fukada-Tanaka S et al (2012) A null mutation of ROS1a for DNA demethylation in rice is not transmittable to progeny. Plant J 71:564–574

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56:389–400

    Article  CAS  PubMed  Google Scholar 

  • Ou X, Zhang Y, Xu C et al (2012) Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.) PLoS One 7:e41143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paszkowski J, Grossniklaus U (2011) Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr Opin Plant Biol 14:195–203

    Article  CAS  PubMed  Google Scholar 

  • Perrella G, Consiglio MF, Aiese-Cigliano R et al (2010) Histone hyperacetylation affects meiotic recombination and chromosome segregation in Arabidopsis. Plant J 62:796–806

    Article  CAS  PubMed  Google Scholar 

  • Probst AV, Fagard M, Proux F et al (2004) Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant Cell 16:1021–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin FJ, Sun QW, Huang LM (2010) Rice SUVH histone methyltransferase genes display specific functions in chromatin modification and retrotransposon repression. Mol Plant 3:773–782

    Article  CAS  PubMed  Google Scholar 

  • Sano H (2010) Inheritance of acquired traits in plants, reinstatement of Lamarck. Plant Signal Behav 5:346–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki T, Wu J, Mizuno H et al (2008) The rice genome sequence as an indispensable tool for crop improvement. In Hirano HY et al (eds) Rice biology in the genomics era. Biotechnology in agriculture and forestry. vol 62 Springer, Berlin, pp 3–12

    Google Scholar 

  • Saze H, Kakutani T (2007) Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J 26:3641–3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shriram V, Kumar V, Devarumath RM et al (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh D, Laxmi A (2015) transcriptional regulation of drought responses: a tortuous network of transcriptional factors. Front Plant Sci 6:895

    PubMed  PubMed Central  Google Scholar 

  • Song X, Wang D, Ma L et al (2012) Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development. Plant J 71:378–389

    CAS  PubMed  Google Scholar 

  • Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46:124–133

    Article  CAS  PubMed  Google Scholar 

  • Stokes TL, Richards EJ (2002) Induced instability of two Arabidopsis constitutive pathogen-response alleles. Proc Natl Acad Sci U S A 99:7792–7796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroud H, Greenberg MVC, Feng S et al (2013) Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152:352–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan F, Zhou C, Zhou Q et al (2016) Analysis of chromatin regulators reveals specific features of rice DNA methylation pathways. Plant Physiol 171:2041–2054

    Article  CAS  PubMed  Google Scholar 

  • Till BJ, Cooper J, Tai TH et al (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • To TK, Nakaminami K, Kim JM et al (2011) Arabidopsis HDA6 is required for freezing tolerance. Biochem Biophys Res Commun 406:414–419

    Article  CAS  PubMed  Google Scholar 

  • Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulation networks and strategies for development of drought-tolerant transgenic plants. Front Plant Sci 6:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsukahara S, Kobayashi A, Kawabe A et al (2009) Bursts of retrotransposition reproduced in Arabidopsis. Nature 461:423–426

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    Article  CAS  PubMed  Google Scholar 

  • Vongs A, Kakutani T, Marienssen RA et al (1993) Arabidopsis thaliana DNA methylation mutants. Science 260:1926–1928

    Article  CAS  PubMed  Google Scholar 

  • Vriet C, Henning L, Laloi C (2015) Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement. Cell Mol Life Sci 72:1261–1273

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Cao H, Chen F et al (2014) The roles of histone acetylation in seed performance and plant development. Plant Physiol Biochem 84:125–133

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Ning S, Wu J et al (2015) An epiallele ay cly1 affects the expression of floret closing (cleistogamy) in barley. Genetics 199:95–104

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Gu L, Sing X et al (2014) Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proc Natl Acad Sci U S A 111:3877–3882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu K, Zhang L, Zhou C et al (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59:225–234

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Zhou H, Zhang Q et al (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Mao L, Qi Y (2012) Roles of DICER-LIKE and ARGONAUTE proteins in TAS-derived small interfering RNA-triggered DNA methylation. Plant Physiol 160:990–999

    Google Scholar 

  • Xue Y, Wong J, Moreno GT et al (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2:851–861

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Yano M (2008) Detection and molecular cloning of genes underlying quantitative phenotypic variations in rice. In: Hirano HY et al (eds) Rice biology in the genomics era, Biotechnology in agriculture and forestry, vol 62. Springer, Berlin, pp 295–308

    Google Scholar 

  • Yelina NE, Choi K, Chelysheva L et al (2012) Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet 8:e1002844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemach A, McDaniel IE, Silva P et al (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Huang Y, Zhang L et al (2004) Structural features of the rice chromosome 4 centromere. Nucleic Acids Res 32:2023–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Cheng Z, Qin R et al (2012) Identification and characterization of an epi-allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice. Plant Cell 24:4407–4421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Sun J, Cao X et al (2015) Epigenetic mutation of RAV6 affects leaf angle and seed size in rice. Plant Physiol 169:2118–2128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Li Y, Xu T et al (2016) The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism. Cell Discov 2:16027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhou DX (2012) Epigenomic modification and epigenetic regulation in rice. J Genet Genomics 39:307–315

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Li M, Gu D et al (2016) Involvement of rice histone deacetylase HDA705 in seed germination and in response to ABA and abiotic stresses. Biochem Biophys Res Commun 470:439–444

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Wang Z, Li S et al (2009) Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev 23:2850–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Ding Y, Sun X et al (2016) Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis. J Exp Bot 67:1703–1713

    Article  CAS  PubMed  Google Scholar 

  • Zhong X, Zhang H, Zhao Y et al (2013) The rice NAD+-dependent histone deacetylase OsSRT1 targets preferentially to stress- and metabolism-related genes and transposable elements. PLoS One 8:e66807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Zhang L, Duan J et al (2005) HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17:1196–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, An F, Feng Y et al (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci U S A 108:12539–12544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuccolo A, Sebastian A, Talag J et al (2007) Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evol Biol 7:152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

I thank Helen Rothnie for comments on the manuscript and Rie Takahashi for technical assistance. This work was supported by a grant (CREST) from Japan Science and Technology Agency to YH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Habu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Habu, Y. (2017). Rice Epigenomics: How Does Epigenetic Manipulation of Crops Contribute to Agriculture?. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Plant Epigenetics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-55520-1_21

Download citation

Publish with us

Policies and ethics