Skip to main content

Epigenetics in Plant Reproductive Development: An Overview from Flowers to Seeds

  • Chapter
  • First Online:
Plant Epigenetics

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Plant development is governed by a wide variety of genetic and epigenetic events that regulate cell fate. Flower to seed developmental transition varies greatly between plants and is of importance in research programs because of its relevance for crop production and human diet. In this chapter, we review the latest research on epigenetics regulation of flower, fruit, and seed development in crop plants. We use tomato (Solanum lycopersicum L.) as our reference crop model while referring to Arabidopsis thaliana for in-depth studies and look into additional crop model plants such as maize (Zea mays), wheat (Triticum spp.), and rice (Oryza sativa) in order to cover a wide range of flower and fruit/seed types. Tomato is an interesting biological model thanks to its fleshy fruit. Tomato has the second natural epimutation reported, the Colorless non-ripening (Cnr), as well as newly reported studies on the paramutation SLTAB2, the role of the demethylase DML2 in fruit ripening, and the identification of two long noncoding RNAs (lncRNAs) involved in the ripening process. Altogether, these works make tomato an interesting and important epigenetic model for plants. A variety of epigenetic-based regulations are involved in each stage of the tomato fruit set, development, and ripening. Four epigenetic mechanisms are proved to be involved in flower, fruit, and developmental processes: histone modifications, DNA (de)methylation, small RNA posttranscriptional locus regulation, and lncRNA-associated regulatory pathways. Epigenetic mechanisms are involved at all stages of reproductive organs development, from the flower to the mature seed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves CS (2015) Análise funcional do papel da enzima DNA metiltransferase2 (DNMT2) no desenvolvimento e resposta à estresses e identificação e caracterização de fragmentos derivados de tRNA (tRFs) em Arabidopsis thaliana. Thesis dissertation, State University of Sao Paulo, Botucatu, Sao Paulo

    Google Scholar 

  • Ampomah-Dwamena C, Morris BA, Sutherland P et al (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130:605–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An Y-Q, Lin L (2011) Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid. BMC Plant Biol 11:105. doi: 10.1186/1471-2229-11-105

    Google Scholar 

  • Arc E, Sechet J, Corbineau F et al (2013) ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci 4:63

    PubMed  PubMed Central  Google Scholar 

  • Aufsatz W, Mette MF, van der Winden J et al (2002) HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA. EMBO J 21:6832–6841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aufsatz W, Stoiber T, Rakic B et al (2007) Arabidopsis histone deacetylase 6: a green link to RNA silencing. Oncogene 26:5477–5488

    Article  CAS  PubMed  Google Scholar 

  • Bai F, Settles AM (2014) Imprinting in plants as a mechanism to generate seed phenotypic diversity. Front Plant Sci 5:780

    PubMed  Google Scholar 

  • Baker CC, Sieber P, Wellmer F et al (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15:303–315

    Article  CAS  PubMed  Google Scholar 

  • Bantignies F, Cavalli G (2006) Cellular memory and dynamic regulation of polycomb group proteins. Curr Opin Cell Biol 18:275–283

    Article  CAS  PubMed  Google Scholar 

  • Bastow R, Mylne JS, Lister C et al (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167

    Article  CAS  PubMed  Google Scholar 

  • Bernatavichute YV, Zhang X, Cokus S et al (2008) Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS One 3:e3156. doi:10.1371/journal.pone.0003156

  • Bentsink L, Jowett J, Hanhart CJ et al (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA 103:17042–17047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloomfield JA, Rose TJ, King GJ (2014) Sustainable harvest: managing plasticity for resilient crops. Plant Biotechnol J 12:517–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokszczanin KL, Krezdorn N, Fragkostefanakis S et al (2015) Identification of novel small ncRNAs in pollen of tomato. BMC Genomics 16:714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borges F, Calarco JP, Martienssen R (2012) Reprogramming the epigenome in Arabidopsis pollen. Cold Spring Harb Symp Quant Biol 77:1–5. doi:10.1101/sqb.2013.77.014969

  • Borges F, Pereira PA, Slotkin RK et al (2011) MicroRNA activity in the Arabidopsis male germline. J Exp Bot 62:1611–1620

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    CAS  PubMed  Google Scholar 

  • Calarco JP, Borges F, Donoghue MT et al (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao D, Wang J, Ju Z et al (2016) Regulations on growth and development in tomato cotyledon, flower and fruit via destruction of miR396 with short tandem target mimic. Plant Sci 247:1–12

    Article  CAS  PubMed  Google Scholar 

  • Chekanova JA (2015) Long non-coding RNAs and their functions in plants. Curr Opin Plant Biol 27:207–216

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Kong J, Lai T et al (2015a) Tuning LeSPL-CNR expression by SlymiR157 affects tomato fruit ripening. Sci Rep 5:7852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen W, Kong J, Qin C et al (2015b) Requirement of CHROMOMETHYLASE3 for somatic inheritance of the spontaneous tomato epimutation colourless non-ripening. Sci Rep 5:9192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiwocha SDS, Cutler AJ, Abrams SR et al (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moistchilling and germination. Plant J 42:35–48. doi:10.1111/j.1365-313X.2005.02359.x

    Article  CAS  PubMed  Google Scholar 

  • Chodavarapu RK, Feng S, Bernatavichute YV et al (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466:388–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cigliano RA, Sanseverino W, Cremona G, Ercolano MR, Conicella C, Consiglio FM (2013) Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles. BMC Genomics 14

    Google Scholar 

  • Colville A, Alhattab R, Hu M et al (2011) Role of HD2 genes in seed germination and early seedling growth in Arabidopsis. Plant Cell Rep 30:1969–1979. doi:10.1007/s00299-011-1105-z

    Article  CAS  PubMed  Google Scholar 

  • Cortijo S, Wardenaar R, Colome-Tatche M, Gilly A, Etcheverry M, Labadie K, Caillieux E, Hospital F, Aury JM, Wincker P et al (2014) Mapping the epigenetic basis of complex traits. Science 343:1145–1148

    Article  CAS  PubMed  Google Scholar 

  • Costa LM, Yuan J, Rouster J et al (2012) Maternal control of nutrient allocation in plant seeds by genomic imprinting. Curr Biol 22:160–165

    Article  CAS  PubMed  Google Scholar 

  • Couzigou JM, Andre O, Guillotin B, Alexandre M, Combier JP (2016) Use of microRNAencoded peptide miPEP172c to stimulate nodulation in soybean. New Phytol 211:379–381

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Luan Y, Jiang N, Bao H, Meng J (2017) Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. Plant J 89:577–589

    Google Scholar 

  • Damodharan S, Zhao D, Arazi T (2016) A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato. Plant J 86:458–471

    Article  CAS  PubMed  Google Scholar 

  • Deleris A, Stroud H, Bernatavichute Y et al (2012) Loss of the DNA methyltransferase MET1 Induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in Arabidopsis thaliana. PLoS Genet 8:e1003062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Din M, Barozai MY (2014) Profiling microRNAs and their targets in an important fleshy fruit: tomato (Solanum lycopersicum). Gene 535:198–203

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Lu Q, Ouyang Y et al (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA 109:2654–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ et al (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci USA 109:E2183–E2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan HH, Wei J, Li TC et al (2013) DNA methylation alterations of upland cotton (Gossypium hirsutum) in response to cold stress. Acta Physiol Plant 35:2445–2453

    Article  CAS  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Ayele BT (2014) Functional genomics of seed dormancy in wheat: advances and prospects. Front Plant Sci 5:458. doi:10.3389/fpls.2014.00458

    PubMed  PubMed Central  Google Scholar 

  • Gao F, Jordan MC, Ayele BT (2012) Transcriptional programs regulating seed dormancy and its release by after-ripening in common wheat (Triticum aestivum L.) Plant Biotechnol J 10:465–476

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Ju Z, Cao D et al (2015) MicroRNA profiling analysis throughout tomato fruit development and ripening reveals potential regulatory role of RIN on microRNAs accumulation. Plant Biotechnol J 13:370–382

    Article  CAS  PubMed  Google Scholar 

  • Garnier O, Laouiellé-Duprat S, Spillane C (2008) Genomic imprinting in plants. Adv Exp Med Biol 626:89–100

    Article  CAS  PubMed  Google Scholar 

  • Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorecki MJ, Long RL, Flematti GR et al (2012) Parental environment changes the dormancy state and karrikinolide response of Brassica tournefortii seeds. Ann Bot 109:1369–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grove A (2011) Functional evolution of bacterial histone-like HU proteins. Curr Issues Mol Biol 13:1–12

    CAS  PubMed  Google Scholar 

  • Grzenda A, Lomberk G, Zhang J-S, Urrutia R (2009) Sin3: master scaffold and transcriptional corepressor. Biochim Biophys Acta 1789:443–450. doi:10.1016/j.bbagrm.2009.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Marcos JF, Costa LM, Biderre-Petit C et al (2004) Maternally expressed gene1 Is a novel maize endosperm transfer cell-specific gene with a maternal parent-of-origin pattern of expression. Plant Cell 16:1288–1301

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Marcos JF, Constância M, Burton GJ (2012) Maternal to offspring resource allocation in plants and mammals. Placenta 33:e3–e10

    Article  PubMed  Google Scholar 

  • Guzy-Wrobelska J, Filek M, Kaliciak A et al (2013) Vernalization and photoperiod-related changes in the DNA methylation state in winter and spring rapeseed. Acta Physiol Plant 35:817–827

    Article  CAS  Google Scholar 

  • Haag JR, Ream TS, Marasco M et al (2012) In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol Cell 48:811–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Jackson S (2015) Floral induction and flower formation—the role and potential applications of miRNAs. Plant Biotechnol J 13:282–292

    Article  CAS  PubMed  Google Scholar 

  • Howell KA, Narsai R, Carroll A et al (2008) Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. Plant Physiol 149:961–980

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Li Z, Zhao D (2016) Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Sci Rep 6:29938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen SE, Sakai H, Finnegan EJ et al (2000) Ectopic hypermethylation of flower-specific genes in Arabidopsis. Curr Biol 10:179–186

    Article  CAS  PubMed  Google Scholar 

  • Karlova R, van Haarst JC, Maliepaard C et al (2013) Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. J Exp Bot 64:1863–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiani J, Rassoulzadegan M (2013) A load of small RNAs in the sperm—how many bits of hereditary information? Cell Res 23:18–19. doi:10.1038/cr.2012.181

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Jung JH, Reyes JL et al (2005) microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42:84–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59

    Article  CAS  PubMed  Google Scholar 

  • van der Knaap E, Chakrabarti M, Chu YH et al (2014) What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front Plant Sci 5:227

    PubMed  PubMed Central  Google Scholar 

  • Köhler C, Makarevich G (2006) Epigenetic mechanisms governing seed development in plants. EMBO Rep 7:1223–1227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krogan NT, Hogan K, Long JA (2012) APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Development 139:4180–4190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Chauhan PK, Khurana A (2016) Identification and expression profiling of DNA methyltransferases during development and stress conditions in Solanaceae. Funct Integr Genomics 16:513–528

    Article  CAS  PubMed  Google Scholar 

  • Lai A, Kennedy BK, Barbie DA et al (2001) RBP1 recruits the mSIN3-histone deacetylase complex to the pocket of retinoblastoma tumor suppressor family proteins found in limited discrete regions of the nucleus at growth arrest. Mol Cell Biol 21:2918–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latzel V, Zhang Y, Karlsson Moritz K et al (2012) Epigenetic variation in plant responses to defence hormones. Ann Bot 110:1423–1428. doi:10.1093/aob/mcs088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laufs P, Peaucelle A, Morin H et al (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322

    Article  CAS  PubMed  Google Scholar 

  • Lauressergues D, Couzigou JM, Clemente HS, Martinez Y, Dunand C, Becard G, Combier JP (2015) Primary transcripts of microRNAs encode regulatory peptides. Nature 520:90–93

    Article  CAS  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DY, An G (2012) Two AP2 family genes, supernumerary bract (SNB) and Osindeterminate spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. Plant J 69:445–461

    Article  CAS  PubMed  Google Scholar 

  • Lee WY, Lee D, Chung WI et al (2009) Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers. Plant J 58:511–524

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhu J, Hu F et al (2012) Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics 13:300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Koornneef M, Soppe WJJ (2007) The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell 19:433–444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Huang J, Wang Y et al (2010) The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. Plant J 62:416–428

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Geyer R, van Zanten M et al (2011) Identification of the Arabidopsis reduced dormancy 2 gene uncovers a role for the polymerase associated factor 1 complex in seed dormancy. PLoS One 6:1–8

    CAS  Google Scholar 

  • Liu J, Jung C, Xu J et al (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24:4333–4345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Wu S, Van Houten J et al (2014) Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. J Exp Bot 65:2507–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, How-Kit A, Stammitti L et al (2015a) A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc Natl Acad Sci USA 112:10804–10809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Hao L, Li D et al (2015b) Long non-coding RNAs and their biological roles in plants. Genomics Proteomics Bioinformatics 13:137–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Luna E, Ton J (2012) The epigenetic machinery controlling transgenerational systemic acquired resistance. Plant Signal Behav 7:615–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarevich G, Villar CBR, Erilova A et al (2008) Mechanism of PHERES1 imprinting in Arabidopsis. J Cell Sci 121:906–912

    Article  CAS  PubMed  Google Scholar 

  • Malagnac F, Bartee L, Bender J (2002) An Arabidopsis SET domain protein required for maintenance but not establishments of DNA methylation. EMBO J 21:6842–6852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning K, Tor M, Poole M et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  CAS  PubMed  Google Scholar 

  • Marín-González E, Suárez-López P (2012) “And yet it moves”: cell-to-cell and long-distance signaling by plant microRNAs. Plant Sci. 196:18–30

    Google Scholar 

  • Martel C, Vrebalov J, Tafelmeyer P et al (2011) The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol 157:1568–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408

    Article  CAS  PubMed  Google Scholar 

  • May O (2010) DNA methylation: fingerprints of the (epi)genome. In: Epigenetics and gene regulation, vol 8. Cayman Chemical, Ann Arbor, pp 22–23

    Google Scholar 

  • Mikami K, Takase H, Tabata T et al (1989) Multiplicity of the DNA-binding protein HBP-1 specific to the conserved hexameric sequence ACGTCA in various plant gene promoters. FEBS Lett 256:67–70

    Article  CAS  PubMed  Google Scholar 

  • Molitor AM, Bu Z, Yu Y et al (2014) Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet 10:e:1004091

    Article  CAS  Google Scholar 

  • Mortensen SA, Grasser KD (2014) The seed dormancy defect of Arabidopsis mutants lacking the transcript elongation factor TFIIS is caused by reduced expression of the DOG1 gene. FEBS Lett 588:47–51

    Article  CAS  PubMed  Google Scholar 

  • Mosher RA, Melnyk CW, Kelly KA et al (2009) Uniparental expression of PolIV-dependent siRNAs in developing endosperm of Arabidopsis. Nature 460:283–286

    Article  CAS  PubMed  Google Scholar 

  • Moxon S, Jing R, Szittya G et al (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair SK, Wang N, Turuspekov Y et al (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci USA 107:490–495

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Ohtsubo N, Mikami K et al (1989) Cisacting sequences that modulate transcription of wheat histone H3 and 3’processing of H3 premature mRNA. Plant Cell Physiol 30:825–832

    Article  CAS  Google Scholar 

  • Palatnik JF, Wollmann H, Schommer C et al (2007) Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell 13:115–125

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Wang W, Zhao X et al (2011) DNA methylation alterations of rice in response to cold stress. POJ 4:364–369

    CAS  Google Scholar 

  • Raissig MT, Baroux C, Grossniklaus U (2011) Regulation and flexibility of genomic imprinting during seed development. Plant Cell 23:16–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinders J, Wulff BBH, Mirouze M et al (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev 23:939–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richon VM, O’brien JP (2002) Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment. Clin Cancer Res 8:662–664

    PubMed  Google Scholar 

  • Rodriguez Lopez CM, Wilkinson MJ (2015) Epi-fingerprinting and epi-interventions for improved crop production and food quality. Front Plant Sci 6:397

    PubMed  PubMed Central  Google Scholar 

  • Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16:258–264

    Article  CAS  PubMed  Google Scholar 

  • Salvini M, Sani E, Fambrini M et al (2012) Molecular analysis of a sunflower gene encoding an homologous of the B subunit of a CAAT binding factor. Mol Biol Rep 39:6449–6465

    Article  CAS  PubMed  Google Scholar 

  • Sandman K, Reeve JN (2006) Archaeal histones and the origin of the histone fold. Curr Opin Microbiol 9:520–525

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Wöhrmann HJP, Raissig MT et al (2013) The polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis. Plant J 73:776–787

    Article  CAS  PubMed  Google Scholar 

  • Scholten S (2010) Genomic imprinting in plant embryos. Epigenetics 5:455–459

    Article  CAS  PubMed  Google Scholar 

  • Schommer C, Bresso EG, Spinelli LS et al (2012) Role of microRNA miR319 in plant development. In: Sunkar R (ed) MicroRNAs in plant development and stress responses. Springer, Berlin, pp 29–47

    Chapter  Google Scholar 

  • Sheldon CC, Jean Finnegan E, James Peacock W et al (2009) Mechanisms of gene repression by vernalization in Arabidopsis. Plant J 59:488–498

    Article  CAS  PubMed  Google Scholar 

  • Sherman JD, Talbert LE (2002) Vernalization-induced changes of the DNA methylation pattern in winter wheat. Genome 45:253–260

    Article  CAS  PubMed  Google Scholar 

  • Sieber P, Wellmer F, Gheyselinck J et al (2007) Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Silva GF, Silva EM, Azevedo MD et al (2014) microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant J 78:604–618

    Article  PubMed  CAS  Google Scholar 

  • Slotkin RK, Vaughn M, Borges F et al (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Angel A, Howard M et al (2012) Vernalization – a cold-induced epigenetic switch. J Cell Sci 125:3723–3731

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Wu K, Dhaubhadel S et al (2010) Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity. Biochem Biophys Res Commun 396:187–192. doi:10.1016/j.bbrc.2010.03.119

    Article  CAS  PubMed  Google Scholar 

  • Steward N, Ito M, Yamaguchi Y et al (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    Article  CAS  PubMed  Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159–164

    Article  CAS  PubMed  Google Scholar 

  • Tomato Genome C (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  CAS  Google Scholar 

  • Ueno Y, Ishikawa T, Watanabe K et al (2007) Histone deacetylases and ASYMMETRIC LEAVES2 are involved in the establishment of polarity in leaves of Arabidopsis. Plant Cell 19:445–457. doi:10.1105/tpc.106.042325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanyushin BF, Ashapkin VV (2009) DNA methylation in plants. Nova Science, New York

    Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V et al (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Cao H, Sun Y et al (2013) Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid-ethylene antagonism mediated by histone deacetylation. Plant Cell 25:149–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Chung PJ, Liu J et al (2014) Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genet Res 24:444–453

    Article  CAS  Google Scholar 

  • Wang H, Niu QW, Wu HW et al (2015a) Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture traits. Plant J 84:404–416

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yu W, Yang Y et al (2015b) Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci Rep 5:16946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Ai G, Zhang C et al (2016) Expression and diversification analysis reveals transposable elements play important roles in the origin of Lycopersicon-specific lncRNAs in tomato. New Phytol 209:1442–1455

    Article  CAS  PubMed  Google Scholar 

  • Winicov I (2000) Alfin1 transcription factor overexpression enhaces plant root growth under normal and saline conditions and improves salt tolerance in alfafa. Planta 210:416–422

    Article  CAS  PubMed  Google Scholar 

  • Wollmann H, Berger F (2012) Epigenetic reprogramming during plant reproduction and seed development. Curr Opin Plant Biol 15:63–69

    Article  CAS  PubMed  Google Scholar 

  • Wollmann H, Mica E, Todesco M et al (2010) On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 137:3633–3642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H-J, Wang Z-M, Wang M et al (2013) Wide-spread long non-coding RNAs (lncRNAs) as endogenous target mimics (eTMs) for microRNAs in plants. Plant Physiol 161:1875–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao B, Wilson JR, Gamblin SJ (2003) SET domains and histone methylation. Curr Opin Struct Biol 13:699–705

    Article  CAS  PubMed  Google Scholar 

  • Xiao W, Custard KD, Brown RC et al (2006) DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18:805–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao J, Zhang H, Xing L et al (2013) Requirement of histone acetyltransferases HAM1 and HAM2 for epigenetic modification of FLC in regulating flowering in Arabidopsis. J Plant Physiol 170:444–451

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Liberatore KL, MacAlister CA et al (2015) A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet 47:784–792

    Article  CAS  PubMed  Google Scholar 

  • Yakovlev IA, Fossdal CG, Johnsen Ø (2010) MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. New Phytol 187:1154–1169

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Chang F, You C et al (2015) Whole-genome DNA methylation patterns and complex associations with gene structure and expression during flower development in Arabidopsis. Plant J 81:268–281

    Article  CAS  PubMed  Google Scholar 

  • Yao JL, Tomes S, Xu J et al (2016) How microRNA172 affects fruit growth in different species is dependent on fruit type. Plant Signal Behav 11:e1156833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • You W, Lorkovic ZJ, Matzke AJM et al (2013) Interplay among RNA polymerases II, IV and V in RNA-directed DNA methylation at a low copy transgene locus in Arabidopsis thaliana. Plant Mol Biol 82:85–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CW, Liu X, Luo M et al (2011) HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol 156:173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemach A, Kim MY, Silva P et al (2010) Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci USA 107:18729–18734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JJ, Xue HW (2013) OsLEC1/OsHAP3E participates in the determination of meristem identity in both vegetative and reproductive developments of rice. J Integr Plant Biol 55:232–249

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-C, Liao J-Y, Li Z-Y et al (2014) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15:1–16

    Article  CAS  Google Scholar 

  • Zhao L, Kim Y, Dinh TT et al (2007) miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems. Plant J 51:840–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Lu J, Zhang J et al (2014) Identification and characterization of histone deacetylases in tomato (Solanum lycopersicum). Front Plant Sci 5:760

    PubMed  Google Scholar 

  • Zhong S, Fei Z, Chen YR et al (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 31:154–159

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Labbe H, Sridha S et al (2004) Expression and function of HD2-type histone deacetylases in Arabidopsis development. Plant J 38:715–724. doi:10.1111/j.1365-313X.2004.02083.x

    Article  CAS  PubMed  Google Scholar 

  • Zhu QH, Upadhyaya NM, Gubler F et al (2009) Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol 9:149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu B, Yang Y, Li R et al (2015) RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. J Exp Bot 66:4483–4495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo J, Zhu B, Fu D et al (2012) Sculpting the maturation, softening and ethylene pathway: the influences of microRNAs on tomato fruits. BMC Genomics 13:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio T. S. Nogueira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gady, A.L.F., Alves, C.S., Nogueira, F.T.S. (2017). Epigenetics in Plant Reproductive Development: An Overview from Flowers to Seeds. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Plant Epigenetics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-55520-1_17

Download citation

Publish with us

Policies and ethics