Skip to main content

Dynamic DNA Methylation Patterns in Stress Response

  • Chapter
  • First Online:
Plant Epigenetics

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Plants are continuously exposed to a vast multiplicity of stressful factors, both of biotic or abiotic nature, that negatively affect their development, yield, and reproductive success. To withstand environmental changes plants have developed complex and sophisticated strategies, among which sensitive detection systems and complex signal transduction pathways. These intricate mechanisms ultimately lead to transcriptional induction of genes encoding proteins enabling adaptation to environmental challenge. Epigenetic modifications, among these DNA methylation, represent potentially robust mechanisms contributing to gene expression regulation during periods of environmental stress. The presence of enzymes involved in DNA demethylation, namely Repressor of Silencing 1, DEMETR, and DEMETR-like, makes modulation of DNA methylation highly ductile in plants. Indeed, cytosine methylation and demethylation within the promoter sequence have been shown to cause gene downregulation and upregulation, respectively, in response to different environmental stress. Due to the sessile nature of plants, this epigenetic mechanism is crucial to permit a suitable plant reaction to stress, resulting in short-term acclimation. However, plants should also be able to reset the stress-induced epigenetic alterations in order to restart normal growth when favorable environmental conditions come back.

In this chapter, dynamics and biologic significance of changes in DNA methylation patterns in plant responses to changing environment will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimoto K, Katakami H, Kim HJ et al (2007) Epigenetic inheritance in rice plants. Ann Bot-London 100:205–217

    Article  CAS  Google Scholar 

  • Angers B, Castonguay E, Massicotte R (2010) Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol Ecol 19:1283–1295

    Article  CAS  PubMed  Google Scholar 

  • Baccarelli A, Wright RO, Bollati V et al (2009) Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 179:572–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baránek M, Cechova J, Raddova J et al (2015) Dynamics and reversibility of the DNA methylation landscape of grapevine plants (Vitis vinifera) stressed by in vitro cultivation and thermotherapy. PLoS One 10:e0126638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bharti P, Mahajan M, Vishwakarma AK et al (2015) AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco. J Exp Bot 66:5959–5969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilichak A, Ilnystkyy Y, Hollunder J et al (2012) The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression. PLoS One 7:e30515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges AA, Jimenez-Arias D, Exposito-Rodriguez M et al (2014) Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Front Plant Sci 5:642

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyko A, Kathiria P, Zemp FJ et al (2007) Transgenerational changes in the genome stability and methylation in pathogen-infected plants (Virus-induced plant genome instability). Nucleic Acids Res 35:1714–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyko A, Blevins T, Yao YL et al (2010) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-Like proteins. PLoS One 5:e9514

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao XF, Jacobsen SE (2002) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Castellano M, Martinez G, Pallas V et al (2015) Alterations in host DNA methylation in response to constitutive expression of Hop stunt viroid RNA in Nicotiana benthamiana plants. Plant Pathol 64:1247–1257

    Article  CAS  Google Scholar 

  • Cavrak VV, Lettner N, Jamge S, Kosarewicz A et al (2014) How a retrotransposon exploits the plant’s heat stress response for its activation. PLoS Genet 10:e1004115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Centomani I, Sgobba A, D’Addabbo P et al (2015) Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells. Protoplasma 252:1451–1459

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK (2009a) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu JK (2009b) RNA-directed DNA methylation and demethylation in plants. Sci China C Life Sci 52:331–343

    Article  CAS  PubMed  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277:589–600

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJ, Flors V et al (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Crisp PA, Ganguly D, Eichten SR et al (2016) Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv 2:e1501340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ et al (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci USA 109:E2183–E2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubin MJ, Zhang P, Meng DZ et al (2015) DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife 4:e05255

    Article  PubMed  PubMed Central  Google Scholar 

  • Dyachenko OV, Zakharchenko NS, Shevchuk TV et al (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry (Moscow) 71:461–465

    Article  CAS  Google Scholar 

  • Fei Y, Xue Y, Du P, Yang S et al (2016) Expression analysis and promoter methylation under osmotic and salinity stress of TaGAPC1 in wheat (Triticum aestivum L). Protoplasma. doi:10.1007/s00709-016-1008-5

  • Ferreira LJ, Azevedo V, Maroco J et al (2015) Salt tolerant and sensitive rice varieties display differential methylome flexibility under salt stress. PLoS One 10:e0124060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finnegan EJ, Kovac KA (2000) Plant DNA methyltransferases. Plant Mol Biol 43:189–201

    Article  CAS  PubMed  Google Scholar 

  • Franks SJ, Hoffmann AA (2012) Genetics of climate change adaptation. Ann Rev Genet 46:185–208

    Article  CAS  PubMed  Google Scholar 

  • Furner IJ, Matzke M (2011) Methylation and demethylation of the Arabidopsis genome. Curr Opin Plant Biol 14:137–141

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Liu HL, Daxinger L et al (2010) An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature 465:106–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg R, Chevala VVSN, Shankar R et al (2015) Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 5:14922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gayacharan A, Joel J (2013) Epigenetic responses to drought stress in rice (Oryza sativa L.) Physiol Mol Biol Plants 19:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring M, Henikoff S (2007) DNA methylation dynamics in plant genomes. Biochim Biophys Acta—Gene Struct Expr 1769:276–286

    Article  CAS  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Ann Rev Biochem 74:481–514

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Morales-Ruiz T, Ariza RR et al (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111:803–814

    Article  CAS  PubMed  Google Scholar 

  • González RM, Ricardi MM, Iusem ND (2011) Atypical epigenetic mark in an atypical location: cytosine methylation at asymmetric (CNN) sites within the body of a non-repetitive tomato gene. BMC Plant Biol 11:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gruenbaum Y, Naveh-Many T, Cedar H et al (1981) Sequence specificity of methylation in higher plant DNA. Nature 292:860–862

    Article  CAS  PubMed  Google Scholar 

  • Hashida SN, Uchiyama T, Martin C et al (2006) The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell 18:104–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser MT, Aufsatz W, Jonak C et al (2011) Transgenerational epigenetic inheritance in plants. Biochim Biophys Acta 1809:459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He XJ, Hsu YF, Zhu S et al (2009) An effector of RNA-directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell 137:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447:418–424

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Ibarra CA, Feng XQ, Schoft VK et al (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda Y, Kinoshita T (2009) DNA demethylation: a lesson from the garden. Chromosoma 118:37–41

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Gaubert H, Bucher E et al (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Mithani A, Belfield EJ et al (2014) Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations. Genome Res 24:1821–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez-Arias D, Borges AA, Luis JC et al (2015) Priming effect of menadione sodium bisulphite against salinity stress in Arabidopsis involves epigenetic changes in genes controlling proline metabolism. Environ Exp Bot 120:23–30

    Article  CAS  Google Scholar 

  • Johnson LM, Du JM, Hale CJ et al (2014) SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507:124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kangaspeska S, Stride B, Metivier R et al (2008) Transient cyclical methylation of promoter DNA. Nature 452:112–115

    Article  CAS  PubMed  Google Scholar 

  • Kankel MW, Ramsey DE, Stokes TL et al (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kou HP, Li Y, Song XX et al (2011) Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.) J Plant Physiol 168:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Kovarik A, Koukalova B, Bezdek M et al (1997) Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theor Appl Genet 95:301–306

    Article  Google Scholar 

  • Lang-Mladek C, Popova O, Kiok K et al (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3:594–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le TN, Schumann U, Smith NA et al (2014) DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol 15:458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei MG, Zhang HM, Julian R et al (2015) Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proc Natl Acad Sci USA 112:3553–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Qian W, Zhao Y et al (2012) Antisilencing role of the RNA-directed DNA methylation pathway and a histone acetyltransferase in Arabidopsis. Proc Natl Acad Sci USA 109:11425–11430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindroth AM, Cao XF, Jackson JP et al (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080

    Article  CAS  PubMed  Google Scholar 

  • Lopez Sanchez A, Stassen JH, Furci L et al (2016) The role of DNA (de)methylation in immune responsiveness of Arabidopsis. Plant J. 10.1111/tpj.13252

  • Luco RF, Pan Q, Tominaga K et al (2010) Regulation of alternative splicing by histone modifications. Science 327:996–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luna E, Bruce TJA, Roberts MR et al (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853

    Article  CAS  PubMed  Google Scholar 

  • Mao H, Wang H, Liu S et al (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6:8326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez G, Castellano M, Tortosa M et al (2014) A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Res 42:1553–1562

    Article  CAS  PubMed  Google Scholar 

  • Mason G, Noris E, Lanteri S et al (2008) Potentiality of methylation-sensitive amplification polymorphism (MSAP) in identifying genes involved in tomato response to Tomato yellow leaf curl Sardinia virus. Plant Mol Biol Rep 26:156–173

    Article  CAS  Google Scholar 

  • Mastan SG, Rathore MS, Bhatt VD et al (2012) Assessment of changes in DNA methylation by methylation-sensitive amplification polymorphism in Jatropha curcas L. subjected to salinity stress. Gene 508:125–129

    Article  CAS  PubMed  Google Scholar 

  • Mathieu O, Reinders J, Caikovski M et al (2007) Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130:851–862

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408

    Article  CAS  PubMed  Google Scholar 

  • Matzke M, Kanno T, Claxinger L et al (2009) RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21:367–376

    Article  CAS  PubMed  Google Scholar 

  • McLoughlin F, Arisz SA, Dekker HL et al (2013) Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem J 450:573–581

    Article  CAS  PubMed  Google Scholar 

  • Meyer P (2015) Epigenetic variation and environmental change. J Exp Bot 66:3541–3548

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi P, Bahramnejad B, Badakhshan H et al (2015) DNA methylation changes in fusarium wilt resistant and sensitive chickpea genotypes (Cicer arietinum L.) Physiol Mol Plant P 91:72–80

    Article  CAS  Google Scholar 

  • Morales-Ruiz T, Ortega-Galisteo AP, Ponferrada-Marin MI et al (2006) DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc Natl Acad Sci USA 103:6853–6858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou XF, Zhuang TT, Yin WC et al (2015) DNA Methylation changes induced in rice by exposure to high concentrations of the nitric oxide modulator, sodium nitroprusside. Plant Mol Biol Rep 33:1428–1440

    Article  CAS  Google Scholar 

  • Pandey N, Pandey-Rai S (2015) Deciphering UV-B-induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in Artemisia annua L. Planta 242:869–879

    Article  CAS  PubMed  Google Scholar 

  • Pavet V, Quintero C, Cecchini NM et al (2006) Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Mol Plant Microbe Interact 19:577–587

    Article  CAS  PubMed  Google Scholar 

  • Penterman J, Zilberman D, Huh JH et al (2007) DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci USA 104:6752–6757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakei A, Maali-Amiri R, Zeinali H et al (2016) DNA methylation and physio-biochemical analysis of chickpea in response to cold stress. Protoplasma 253:61–76

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Negrete E, Lozano-Duran R, Piedra-Aguilera A et al (2013) Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol 199:464–475

    Article  CAS  PubMed  Google Scholar 

  • Sani E, Herzyk P, Perrella G et al (2013) Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol 14:R59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schoft VK, Chumak N, Choi Y et al (2011) Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte. Proc Natl Acad Sci USA 108:8042–8047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secco D, Wang C, Shou HX et al (2015) Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. Elife 4:e09343

    Article  PubMed Central  Google Scholar 

  • Sgobba A, Paradiso A, Dipierro S et al (2015) Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress. Physiol Plant 153:68–78

    Article  CAS  PubMed  Google Scholar 

  • Sha AH, Lin XH, Huang JB et al (2005) Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Mol Genet Genomics 273:484–490

    Article  CAS  PubMed  Google Scholar 

  • Shan XH, Wang XY, Yang G et al (2013) Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylation-sensitive amplified polymorphisms. J Plant Biol 56:32–38

    Article  CAS  Google Scholar 

  • Shen X, De Jonge J, Forsberg SKG et al (2014) Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality. PLoS Genet 10:e1004842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sherman JD, Talbert LE (2002) Vernalization-induced changes of the DNA methylation pattern in winter wheat. Genome 45:253–260

    Article  CAS  PubMed  Google Scholar 

  • Slaughter A, Daniel X, Flors V et al (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    Article  CAS  PubMed  Google Scholar 

  • Song YG, Ji DD, Li S et al (2012) The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS One 7:e41274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steward N, Ito M, Yamaguchi Y et al (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    Article  CAS  PubMed  Google Scholar 

  • Takuno S, Gaut BS (2012) Body-methylated genes in Arabidopsis thaliana are functionally important and evolve slowly. Mol Biol Evol 29:219–227

    Article  CAS  PubMed  Google Scholar 

  • Tan MP (2010) Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol Bioch 48:21–26

    Article  CAS  Google Scholar 

  • Teixeira FK, Colot V (2009) Gene body DNA methylation in plants: a means to an end or an end to a means? EMBO J 28:997–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tricker PJ, Gibbings JG, Rodriguez Lopez CM et al (2012) Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development. J Exp Bot 63:3799–3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughn MW, Tanurdzic M, Lippman Z et al (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:1617–1629

    Article  CAS  Google Scholar 

  • Vining KJ, Pomraning KR, Wilhelm LJ et al (2012) Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression. BMC Genomics 13:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vriet C, Hennig L, Laloi C (2015) Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement. Cell Mol Life Sci 72:1261–1273

    Article  CAS  PubMed  Google Scholar 

  • Wada Y, Miyamoto K, Kusano T et al (2004) Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genomics 271:658–666

    Article  CAS  PubMed  Google Scholar 

  • Wang WS, Zhao XQ, Pan YJ et al (2011) DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. J Genet Genomics 38:419–424

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Weigel D, Smith LM (2013) Transposon variants and their effects on gene expression in Arabidopsis. PLoS Genet 9:e1003255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Qin LM, Xie C et al (2014) Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line. Plant Cell Physiol 55:1354–1365

    Article  CAS  PubMed  Google Scholar 

  • Wang WS, Huang F, Qin Q et al (2015) Comparative analysis of DNA methylation changes in two rice genotypes under salt stress and subsequent recovery. Biochem Biophys Res Commun 465:790–796

    Article  CAS  PubMed  Google Scholar 

  • Wassenegger M (2000) RNA-directed DNA methylation. Plant Mol Biol 43:203–220

    Article  CAS  PubMed  Google Scholar 

  • Williams BP, Pignatta D, Henikoff S et al (2015) Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet 11:e1005142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu R, Wang Y, Zheng H et al (2015) Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. J Exp Bot 66:5997–6008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu A, Lepere G, Jay F et al (2013) Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci USA 110:2389–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemach A, McDaniel IE, Silva P et al (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919

    Article  CAS  PubMed  Google Scholar 

  • Zemach A, Kim MY, Hsieh PH et al (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Hsieh TF (2013) Heritable epigenetic variation and its potential applications for crop improvement. Plant Breeding Biotechnol 1:307–319

    Article  Google Scholar 

  • Zhang XY, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Shiu S, Cal A et al (2008) Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genet 4:e1000032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Jin JP, Tang LA et al (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39:D1114–D1117

    Article  CAS  PubMed  Google Scholar 

  • Zhang PY, Wang JG, Geng YP et al (2015) MSAP-based analysis of DNA methylation diversity in tobacco exposed to different environments and at different development phases. Biochem Syst Ecol 62:249–260

    Article  CAS  Google Scholar 

  • Zhao Z, Shi HJ, Wang ML et al (2015) Analysis of DNA methylation of Spirodela polyrhiza (Grater Duckweed) in response to abscisic acid using methylation-sensitive amplied polymorphism. Russ J Plant Physiol 62:127–135

    Article  CAS  Google Scholar 

  • Zhong L, Xu YH, Wang JB (2009) DNA-methylation changes induced by salt stress in wheat Triticum aestivum. Afr J Biotechnol 8:6201–6207

    Article  CAS  Google Scholar 

  • Zhong L, Xu YH, Wang JB (2010) The effect of 5-azacytidine on wheat seedlings responses to NaCl stress. Biol Plant 54:753–756

    Article  CAS  Google Scholar 

  • Zhong XH, Du JM, Hale CJ et al (2014) Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 157:1050–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JH, Kapoor A, Sridhar VV et al (2007) The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr Biol 17:54–59

    Article  CAS  PubMed  Google Scholar 

  • Zilberman D, Gehring M, Tran RK et al (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Concetta de Pinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Viggiano, L., de Pinto, M.C. (2017). Dynamic DNA Methylation Patterns in Stress Response. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Plant Epigenetics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-55520-1_15

Download citation

Publish with us

Policies and ethics